(An Autonomous Institution affiliated to Anna University)

16EET44 Networks and Signals Tutorial Book

Name	:
	
Roll No	:
KOII NO	:
Department & Section	:

Date:

Dr. Mahalingam College of Engineering and Technology, Pollachi – 642003

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Index

Tutorial No	Date	Tutorial Topic	Marks	Sign			
	CO1:						
1		Network Functions					
2		Z Parameters					
3		Y Parameters					
4		h and g Parameters					
5		ABCD Parameters					
6		Transformation of Parameters					
7		Lattice and Ladder Network					
Average							

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

RUBRICS TO BE FOLLOWED FOR TUTORIAL

Criteria	Excellent	Good	Need Improvement	Attempting	Not Attempting	
	5 Points	4 Points	3 Points	2 Points	1 Point	
Mathematical Calculations	90-100% steps and solutions have without mathematical errors	Almost 80 - 89% steps and solutions without mathematical errors	Most 70 - 79% steps and solutions without mathematical errors	50% steps and s mathematical calculations having errors	More steps are missing and many mathematical errors	
Circuit Diagram	Circuit diagram with correct polarity are very clear and greatly add to the understanding procedures	Circuit diagram with correct polarity is clear and easy to understand	Circuit diagram with correct polarity is clear and somewhat difficult to understand	Circuit diagram with correct polarity is partially clear and difficult to understand	Circuit diagram with correct polarity is missing	
Neatness	The work is presented in a clear and organized manner	The work is presented in a clear manner to understand	The work is presented in a clear	The work is presented in a clear but difficult to read	The work is un organized and appears sloppy	
Completion	All problems are completed	80% problems are completed	70% problems are completed	Only 50% problems are completed	Several Problems are not completed.	

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Unit 1

NETWORK FUNCTIONS OF ONE PORT NETWORK

1. Driving Point Impedance Z:

$$Z(s) = V(s)/I(s) \Omega$$

2. Driving Point Admittance Y:

$$Y(s) = 1/Z(s) = I(s)/V(s)$$

Network Functions for two port networks:

1. Driving Point Impedance Z:

$$Z_{11}(s) = V_1(s)/I_1(s)$$

$$Z_{22}(s) = V_2(s)/I_2(s)$$

2. Driving Point Admittance Y:

$$Y_{11}(s) = 1/Z_{11}(s) = I_1(s)/V_1(s)$$

$$Y_{22}(s) = 1/Z_{22}(s) = I_2(s)/V_2(s)$$

3. Voltage Transfer Ratio:

$$G_{12}(s)=V_1(s)/V_2(s)$$

$$G_{21}(s)=V_2(s)/V_1(s)$$

4. Current Transfer Ratio:

$$\alpha_{12}(s) = I_1(s)/I_2(s)$$

$$\alpha_{21}(s) = I_2(s)/I_1(s)$$

5. Transfer Impedance:

$$Z_{12}(s) = V_1(s)/I_2(s)$$

$$Z_{21}(s) = V_2(s)/I_1(s)$$

6. Transfer Admittance:

$$Y_{12}(s) = I_1(s)/V_2(s)$$

$$Y_{21}(s) = I_2(s)/V_1(s)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

NETWORK PARAMETERS

7. Z Parameters:

$$V_1 = Z_{11} I_1 + Z_{12} I_2$$

$$V_2\!=Z_{21}\;I_1\!+\!Z_{22}\;I_2$$

$$[V] = [Z][I]$$

$$Z_{11} = \frac{V1}{I_1}$$
 at $I_2 = 0$ Open circuit Input Impedance

$$Z_{12} = \frac{V1}{I2}$$
 at $I_1 = 0$ Open circuit Reverse Transfer Impedance

$$Z_{21} = \frac{V2}{I1}$$
 at $I_2 = 0$ Open circuit Forward Transfer Impedance

$$Z_{22} = \frac{v_2}{l_2}$$
 at $I_1 = 0$ Open circuit Output Impedance

8. Y Parameters:

$$I_1 = Y_{11} \ V_1 + Y_{12} \ V_2$$

$$I_2 = Y_{21} V_1 + Y_{22} V_2$$

$$[I] = [Y] [V]$$

$$Y_{11} = \frac{I1}{V1}$$
 at $V_2 = 0$ Short circuit Input Admittance

$$Y_{12} = \frac{I_1}{V_2}$$
 at $V_1 = 0$ Short circuit Reverse Transfer Admittance

$$Y_{21} = \frac{I2}{V_1}$$
 at $V_2 = 0$ Short circuit Forward Transfer Admittance

$$Y_{22} = \frac{I2}{V2}$$
 at $V_1 = 0$ Short circuit Output Admittance

9. Hybrid Parameters(h):

$$V_1 = h_{11} \; I_1 + h_{12} \; V_2$$

$$I_2 = h_{21} \ I_1 + h_{22} \ V_2$$

$$h_{11} = \frac{V1}{I1}$$
 at $V_2 = 0$ Short circuit Input Impedance $(\frac{1}{Y11})$

$$h_{12} = \frac{V1}{V2}$$
 at $I_1 = 0$ Open circuit Reverse Voltage Gain $(\frac{Z12}{Z22})$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

$$h_{21} = \frac{I2}{I1}$$
 at $V_2 = 0$ Short circuit Forward Current gain $(\frac{Y21}{Y11})$

$$h_{22} = \frac{I2}{V2}$$
 at $I_1 = 0$ Open circuit Output Admittance $(\frac{1}{Z22})$

10. Inverse Hybrid Parameters(g):

$$I_1 = g_{11} \ V_1 + g_{12} \ I_2$$

$$V_2 = g_{21} V_1 + g_{22} I_2$$

$$g_{11} = \frac{I1}{V1}$$
 at $I_2 = 0$ Open circuit Input Admittance $(\frac{1}{Z11})$

$$g_{12} = \frac{I1}{I2}$$
 at $V_1 = 0$ Short circuit Reverse Current Gain

$$g_{21} = \frac{v_2}{v_1}$$
 at $I_2 = 0$ Open circuit Voltage gain

$$g_{22} = \frac{V2}{I2}$$
 at $V_1 = 0$ Short circuit Output Impedance $(\frac{1}{Y22})$

11. Transmission Parameters (ABCD):

$$V_1 = A_{11} \ V_2 - B_{12} \ I_2$$

$$I_1 = C_{21} \ V_2 - D_{22} \ I_2$$

$$A = \frac{V_1}{V_2}$$
 at $I_2 = 0$ $\frac{1}{A}$ is called open circuit voltage gain

$$C = \frac{I1}{V2}$$
 at $I_2 = 0$ $\frac{1}{C}$ is called open circuit transfer impedance

-B =
$$\frac{V_1}{I_2}$$
 at V₂=0 $-\frac{1}{B}$ is called short circuit transfer admittance

-D =
$$\frac{I_1}{I_2}$$
 at V₂=0 $-\frac{1}{D}$ is called short circuit current gain

12. Inverse Transmission Parameters(A'B'C'D'):

A' =
$$\frac{v_2}{v_1}$$
 at $I_1 = 0$

C' =
$$\frac{I2}{V1}$$
 at $I_1 = 0$

B' =
$$\frac{-V2}{I1}$$
 at $V_2 = 0$

D' =
$$\frac{-I2}{I1}$$
 at V₁=0

Date:

Dr. Mahalingam College of Engineering and Technology, Pollachi – 642003

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

INTER RELATIONSHIP OF DIFFERENT PARAMETERS

	Z	Y	ABCD	A'B'C'D'	ħ	g
Z	Z ₁₁ Z ₁₂	$\frac{Y_{22}}{\Delta_y} \frac{-Y_{12}}{\Delta_y}$	$\frac{A}{C}\frac{\Delta_T}{C}$	$\frac{D'}{C'}\frac{1}{C'}$	$\frac{\Delta_h}{h_{22}} \frac{h_{22}}{h_{22}}$	$\frac{1}{g_{11}} \frac{-g_{12}}{g_{11}}$
	$Z_{21} Z_{22}$	$\frac{-Y_{21}}{\Delta_y} \frac{Y_{11}}{\Delta_y}$	$\frac{1}{C}\frac{D}{C}$	$\frac{\Delta_{T'}}{C'}\frac{A'}{C'}$	$\frac{-h_{21}}{h_{22}}\frac{1}{h_{22}}$	$\frac{g_{21}}{g_{11}} \frac{\Delta_g}{g_{11}}$
Y	$\frac{Z_{22}}{\Delta_z} \frac{-Z_{12}}{\Delta_z}$	$Y_{11} Y_{12}$	$\frac{D}{B} \frac{-\Delta_T}{B}$		$\frac{1}{h_{11}} \frac{-h_{12}}{h_{11}}$	$\frac{\Delta_g}{g_{22}} \frac{g_{12}}{g_{22}}$
	$-Z_{21} - Z_{11}$ $\Delta_z \Delta_z$		$\frac{-1}{B}\frac{A}{B}$	$\frac{-\Delta_{T'}}{B'}\frac{D'}{B'}$		$\frac{-g_{21}}{g_{22}}\frac{1}{g_{22}}$
AB	$\frac{Z_{11} \Delta_z}{Z_{21} Z_{21}}$	$\frac{-Y_{22}}{Y_{21}} \frac{-1}{Y_{21}}$	A B	$\frac{D'}{\Delta_{T'}} \frac{B'}{\Delta_{T'}}$	$\frac{\Delta_h}{h_{21}} \frac{h_{11}}{h_{21}}$	$\frac{1}{g_{21}} \frac{g_{22}}{g_{21}}$
CD	$\frac{1}{Z_{21}} \frac{Z_{22}}{Z_{21}}$	$\frac{\Delta Y}{Y_{21}} \frac{-Y_{11}}{Y_{21}}$	CD	$\frac{C'}{\Delta_{T'}}\frac{A'}{\Delta_{T'}}$	$\frac{-h_{22}}{h_{21}}\frac{-1}{h_{21}}$	$\frac{g_{11}}{g_{21}} \frac{\Delta_g}{g_{21}}$
A' B'		$\frac{-Y_{11}}{Y_{12}} \frac{-1}{Y_{12}}$		A' B'	$\frac{1}{h_{12}} \frac{h_{11}}{h_{12}}$	$\frac{-\Delta_{g}}{g_{12}} \frac{-g_{22}}{g_{12}}$
C' D'	$\frac{1}{Z_{12}} \frac{Z_{11}}{Z_{12}}$	$\frac{-\Delta_{Y}}{Y_{12}} \frac{-Y_{22}}{Y_{12}}$	$\frac{C}{\Delta_T} \frac{A}{\Delta_T}$	C' D'	$\frac{h_{22}}{h_{12}}\frac{\Delta_h}{h_{12}}$	$\frac{-g_{11}}{g_{12}}\frac{-1}{g_{12}}$
	$\frac{\Delta_z}{Z_{22}} \frac{Z_{12}}{Z_{22}}$	$\frac{1}{Y_{11}} \frac{-Y_{12}}{Y_{11}}$	$\frac{B}{D}\frac{\Delta_T}{D}$	$\frac{B'}{A'}\frac{1}{A'}$	h ₁₁ h ₁₂	$\frac{g_{22}-g_{12}}{\Delta_g}$
h	$\frac{-Z_{21}}{Z_{22}}\frac{1}{Z_{22}}$	$\frac{Y_{21}}{Y_{11}} \frac{\Delta_Y}{Y_{11}}$	$\frac{-1}{D}\frac{C}{D}$	$\frac{\Delta_{T'}}{A'}\frac{C'}{A'}$	$h_{21} h_{22}$	$\frac{-g_{21}}{\Delta_g}\frac{g_{11}}{\Delta_g}$
	$\frac{1}{Z_{11}} \frac{-Z_{12}}{Z_{11}}$	$\frac{\Delta_{Y}}{Y_{22}} \frac{Y_{12}}{Y_{22}}$	$\frac{C - \Delta_T}{A A}$	$\frac{C'}{D'}\frac{-1}{D'}$	$\frac{h_{22} - h_{12}}{\Delta_h} \frac{\Delta_h}{\Delta_h}$	$g_{11} g_{12}$
g	$\frac{Z_{21}}{Z_{11}}\frac{\Delta_z}{Z_{11}}$	$\frac{-Y_{21}}{Y_{22}} \frac{1}{Y_{22}}$	$\frac{1}{A}\frac{B}{A}$	$\frac{\Delta_{I'}}{D'}\frac{B'}{D'}$	$\frac{-h_{21}}{\Delta_h}\frac{h_{11}}{\Delta_h}$	$g_{21} g_{22}$
The two port is reciprocal If	$Z_{12} = Z_{21}$	$Y_{12} = Y_{21}$	The determinant of the transmission matrix = 1 $(\Delta_T = 1)$	minant of	$h_{12} = -h_{21}$	$g_{12} = -g_{21}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Network Functions

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Find $Z_{11}(s)$, $Z_{21}(s)$ in the following circuit.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. For the two port network, determine the driving point impedances $Z_{11}(s)$, the transfer impedance $Z_{21}(s)$ and the voltage transfer ratio $G_{21}(s)$.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

3. A function is given by $Z(s) = 2s/(S^2+16)$. Draw its pole and zero plot. and comment on stability

4.A network function is given by $p(s) = 2s/(s+2)(s^2+2s+2)$. Obtain the pole zero diagram and comment on stability.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

5. For the network shown in figure obtain the transfer functions $G_{21}(s)$, $Z_{21}(s)$ and driving point impedance $Z_{11}(s)$.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Z Parameters

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Obtain Z Parameter for the following circuit.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Find the Z Parameter of the network.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Find Z Parameter for the circuit

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Y Parameters

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Find the Y parameter for the network.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Find the Y parameter of the following circuit

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

h and g Parameters

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Find the h parameters of the network shown on the figure.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Obtain h parameters.

Date:

Dr. Mahalingam College of Engineering and Technology, Pollachi – 642003

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

3. Obtain the h Parameter for the circuit shown below.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

4. Find the g parameters of the network

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

ABCD Parameters

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Find the transmission Parameters.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Determine the ABCD parameters of 2 network connected in cascade as shown.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Obtain ABCD for the following problem.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Transformation of Parameters

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

1. The impedance parameters of a 2 port network are $Z11=2\Omega$, $Z22=4\Omega$, $Z21=6\Omega$,. Compute the h parameter and write the describing equations.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

2. The impedance parameters of a 2 port network are $Z_{11}=6\Omega$, $Z_{22}=4\Omega$, $Z_{21}=3\Omega$,. Compute the Y parameter and ABCD parameters and write the describing equations.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Two networks shown in the figure are connected in series. obtain the Z parameters of the combination. Also verify by direct calculation.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Lattice and Ladder Network

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. Obtain T network for the following network.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Obtain T Network for the following.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. For the ladder network shown in figure obtain open circuit driving point impedance at port 1 - 2.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

4. Obtain the lattice equivalent of a symmetrical T network shown on the figure below.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

GATE QUESTIONS

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

1. The impedance parameter Z_{11} and Z_{12} of the two port network shown in figure are,

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. The h parameters of the circuit shown in the figure are,

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. In the two port network shown in the figure find Z_{12} and Z_{21} respectively.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

4. The ABCD parameters of an ideal n:1 transformer shown in the figure is $\begin{bmatrix} n & 0 \\ 0 & x \end{bmatrix}$. The value of x will be.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

4. A two port network shown below is excited by external DC sources, two voltage and current are measured with voltmeter V_1,V_2 and ammeter A_1A_2 as indicated. Under the following condition readings obtained are.

