
CHAPTER 17

Filters and Attenuators

CLASSIFICATION OF FILTERS17.1

Wave filters were first invented by G.A Campbell 
and O.I. Lobel of the Bell Telephone 
Laboratories. A filter is a reactive network that 
freely passes the desired bands of frequencies 
while almost totally suppressing all other bands. 
A filter is constructed from purely reactive 
elements, for otherwise the attenuation would 
never becomes zero in the pass band of the filter 
network. Filters differ from simple resonant 
circuits in providing a substantially constant 
transmission over the band which they accept; 
this band may lie between any limits depending 
on the design. Ideally, filters should produce 
no attenuation in the desired band, called the 
transmission band or pass band, and should 

provide total or infinite attenuation at all other frequencies, called attenuation band or 
stop band. The frequency which separates the transmission band and the attenuation 
band is defined as the cut-off frequency of the wave filters, and is designated by fc.

Filter networks are widely used in communication systems to separate various 
voice channels in carrier frequency telephone circuits. Filters also find applications 
in instrumentation, telemetering equipment, etc. where it is necessary to transmit or 
attenuate a limited range of frequencies.

A filter may, in principle, have any number of pass bands separated by attenuation 
bands. However, they are classified into four common types, viz. low pass, high pass, 
band pass and band elimination.

Decibel and Neper

The attenuation of a wave filter can be expressed in decibels or nepers. Neper is 
defined as the natural logarithm of the ratio of input voltage (or current) to the 
output voltage (or current), provided that the network is properly terminated in its 
characteristic impedance Z0.

From Fig. 17.1 (a) the number of 

nepers, N
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A neper can also be expressed in 
terms of input power, P1 and the output 
power P2 as N 5 1/2 loge

 P1/P2.Fig. 17.1 (a)
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A decibel is defined as ten times the common logarithms of the ratio of the input 
power to the output power.

∴ Decibel D
P

P
=10 10
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The decibel can be expressed in terms of the ratio of input voltage (or current) and 
the output voltage (or current.)
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∴ One decibel is equal to 0.115 N.

Low Pass Filter

By definition, a low pass (LP) filter is one which passes without attenuation all 
frequencies up to the cut-off frequency fc, and attenuates all other frequencies greater 
than fc. The attenuation characteristic of an ideal LP filter is shown in Fig. 17.1 (b). 
This transmits currents of all frequencies from zero up to the cut-off frequency. The 
band is called pass band or transmission band. Thus, the pass band for the LP filter 
is the frequency range 0 to fc. The frequency range over which transmission does not 
take place is called the stop band or attenuation band. The stop band for a LP filter is 
the frequency range above fc.

Fig. 17.1 (b)

High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off 
frequency, fc, and passes all frequencies above fc. Thus the pass band of this filter is 
the frequency range above fc, and the stop band is the frequency range below fc. The 
attenuation characteristic of a HP filter is shown in Fig. 17.1 (b).
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Band Pass Filter

A band pass filter passes frequencies between two designated cut-off frequencies and 
attenuates all other frequencies. It is abbreviated as BP filter. As shown in Fig. 17.1 
(b), a BP filter has two cut-off frequencies and will have the pass band f2 – f1; f1 is 
called the lower cut-off frequency, while f2 is called the upper cut-off frequency.

Band Elimination Filter

A band elimination filter passes all frequencies lying outside a certain range, while it 
attenuates all frequencies between the two designated frequencies. It is also referred 
as band stop filter. The characteristic of an ideal band elimination filter is shown in 
Fig. 17.1 (b).

All frequencies between f1 and f2 will be attenuated while frequencies below f1 
and above f2 will be passed.

FILTER NETWORKS17.2

Ideally a filter should have zero attenuation in the pass band. This condition can only 
be satisfied if the elements of the filter are dissipationless, which cannot be realized 
in practice. Filters are designed with an assumption that the elements of the filters are 
purely reactive. Filters are made of symmetrical T, or p sections. T and p sections can 
be considered as combinations of unsymmetrical L sections as shown in Fig. 17.2.

The ladder structure is one of the commonest forms of filter network. A cascade 
connection of several T and p sections constitutes a ladder network. A common form 
of the ladder network is shown in Fig. 17.3.

Figure 17.3 (a) represents a T section ladder network, whereas Fig. 17.3 (b) 
represents the p section ladder network. It can be observed that both networks are 
identical except at the ends.

Fig. 17.2
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Fig. 17.3

EQUATIONS OF FILTER NETWORKS17.3

The study of the behaviour of any filter requires the calculation of its propagation 
constant g, attenuation a, phase shift b and its characteristic impedance Z0.

T-Network

Consider a symmetrical T-network as shown in Fig. 17.4.
As has already been mentioned in 

Section 16.13, if the image impedances 
at port 1-19 and port 2-29 are equal to 
each other, the image impedance is then 
called the characteristic, or the iterative 
impedance, Z0. Thus, if the network in 
Fig. 17.4 is terminated in Z0, its input 
impedance will also be Z0. The value 
of input impedance for the T-network 
when it is terminated in Z0 is given by
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The characteristic impedance of a symmetrical T-section is
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= +  (17.1)

Z0T can also be expressed in terms of open circuit impedance Z0c and short 
circuit impedance Zsc of the T-network. From Fig. 17.4, the open circuit impedance 
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Propagation Constant of T-Network

By definition the propagation constant g of the network in Fig. 17.5 is given by 
g 5 loge I1/I2

Writing the mesh equation for the 
2nd mesh, we get
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The characteristic impedance of a T-network is given by

 Z
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= +  (17.4)

Squaring Eqs 17.3 and 17.4 and subtracting Eq. 17.4 from Eq. 17.3, we get
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Rearranging the above equation, we have
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Still another expression may be obtained for the complex propagation constant in 
terms of the hyperbolic tangent rather than hyperbolic cosine.
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Dividing Eq. 17.6 by Eq. 17.5, we get
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Also from Eq. 17.2, Z Z ZT c sc0 0=

 

tanh g =
Z
Z
sc

c0

Also sinh (cosh )
g

g
2

1

2
1= −

Where cosh ( )g = +1 21 2Z Z/

 =
Z
Z
1

24
 (17.7)

p-Network

Consider asymmetrical p-section shown in Fig. 17.6. When the network is terminated 
in Z0 at port 2-29, its input impedance is given by
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Rearranging the above equation leads to
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Fig. 17.6
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which is the characteristic impedance of a symmetrical p-network,
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Z0p can be expressed in terms of the open circuit impedance Z0c and short circuit 
impedance Zsc of the p network shown in Fig. 17.6 exclusive of the load Z0.

From Fig. 17.6, the input impedance at port 1-19when port 2-29 is open is given 
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 Z Z Zc sc0 0p =  (17.10)

Propagation Constant of p-Network

The propagation constant of a symmetrical p-section is the same as that for a 
symmetrical T-section.

i.e. cosh g = +1
2

1

2

Z
Z

CLASSIFICATION OF PASS BAND AND STOP BAND17.4

It is possible to verify the characteristics of filters from the propagation constant 
of the network. The propagation constant g, being a function of frequency, the 
pass band, stop band and the cut-off point, i.e. the point of separation between the 
two bands, can be identified. For symmetrical T or p-section, the expression for 
propagation constant g in terms of the hyperbolic functions is given by Eqs 17.5 

and 17.7 in Section 17.3. From Eq. 17.7, sin h
g

2 4
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Z
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.

If Z1 and Z2 are both pure imaginary values, their ratio, and hence Z1/4Z2, will be a 
pure real number. Since Z1 and Z2 may be anywhere in the range from – j  t0 1 j, Z1/4Z2 
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may also have any real value between the infinite limits. Then sinh /
g

2
41 2= Z Z  

will also have infinite limits, but may be either real or imaginary depending upon 
whether Z1/4Z2 is positive or negative.

We know that the propagation constant is a complex function g 5 a 1 jb, the real 
part of the complex propagation constant a, is a measure of the change in magnitude 
of the current or voltage in the network, known as the attenuation constant. b is a 
measure of the difference in phase between the input and output currents or voltages, 
known as phase shift constant. Therefore a and b take on different values depending 
upon the range of Z1/4Z2. From Eq. 17.7, we have
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Case A

If Z1 and Z2 are the same type of reactances, then 
Z
Z
1

24
 is real and equal to say a + x.

The imaginary part of the Eq. 17.11 must be zero.
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a and b must satisfy both the above equations.
Equation 17.12 can be satisfied if b/2 5 0 or np, where n 5 0, 1, 2, ..., then 

cos b/2 = 1 and sinh a/2 = x Z
Z
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That x should be always positive implies that
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Since a ≠ 0, it indicates that the attenuation exists.
Case B

Consider the case of Z1 and Z2 being opposite type of reactances, i.e. Z1/4Z2 is 
negative, making Z Z1 24/  imaginary and equal to say Jx

∴ The real part of the Eq. 17.11 must be zero.

 sinh cos
� �

2 2
0=  (17.15)

 cosh sin
� �

2 2
= x  (17.16)

Both the above equations must be satisfied simultaneously by a and b. Equation 17.15 
may be satisfied when a 5 0, or when b 5 p. These conditions are considered separately 
hereunder.
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(i) When a 5 0; from Eq. 17.15, sinh a/2 5 0. And from Eq. 17.16 
sin / /b 2 41 2= =x Z Z . But the sine can have a maximum value of 1. Therefore, 
the above solution is valid only for negative Z1/4Z2, and having maximum value of 
unity. It indicates the condition of pass band with zero attenuation and follows the 
condition as
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(ii) When b 5 p, from Eq. 17.15, cos b/2 5 0. And from Eq. 17.16, sin b/2 5  1; 

cosh a/2 = x Z Z= 1 24/ .

Since cosh a/2 $ 1, this solution is valid for negative Z1/4Z2, and having magnitude 
greater than, or equal to unity. It indicates the condition of stop band since a ≠ 0.
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It can be observed that there are three limits for case A and B. Knowing the values 
of Z1 and Z2, it is possible to determine the case to be applied to the filter. Z1 and Z2 
are made of different types of reactances, or combinations of reactances, so that, as 
the frequency changes, a filter may pass from one case to another. Case A and (ii) in 
case B are attenuation bands, whereas (i) in case B is the transmission band.

The frequency which separates the attenuation band from pass band or vice 
versa is called cut-off frequency. The cut-off frequency is denoted by fc, and is also 
termed as nominal frequency. Since Z0 is real in the pass band and imaginary in an 
attenuation band, fc is the frequency at which Z0 changes from being real to being 
imaginary. These frequencies occur at
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The above conditions can be represented graphically, as in Fig. 17.7.

Fig. 17.7
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CHARACTERISTIC IMPEDANCE IN THE PASS AND STOP BANDS17.5

Referring to the characteristic impedance of a symmetrical T-network, from Eq. 17.1 
we have
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If Z1 and Z2 are purely reactive, let Z1 5 jx1 and Z2 5 jx2, then
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A pass band exists when x1 and x2 are of opposite reactances and

− < <1
4

01

2

x
x

Substituting these conditions in Eq. 17.19, we find that Z0T is positive and real. 
Now consider the stop band. A stop band exists when x1 and x2 are of the same 
type of reactances; then x1/4x2 . 0. Substituting these conditions in Eq. 17.19, we 
find that Z0T is purely imaginary in this attenuation region. Another stop band exists 
when x1 and x2 are of the same type of reactances, but with x1/4x2 , – 1. Then from 
Eq. 17.19, Z0T is again purely imaginary in the attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance R0(Z0T 5 R0), 
the input impedance is R0 and the network transmits the power received from the 
source to the R0 without any attenuation. In a stop band Z0T is reactive. Therefore, 
if the network is terminated in a pure reactance (Z0 5 pure reactance), the input 
impedance is reactive, and cannot receive or transmit power. However, the network 
transmits voltage and current with 90° phase difference and with attenuation. It has 
already been shown that the characteristic impedance of a symmetrical p-section can 
be expressed in terms of T. Thus, from Eq. 17.9, Z0p 5 Z1Z2/Z0T.

Since Z1 and Z2 are purely reactive, Z0p is real if Z0T is real, and Z0x is imaginary 
if Z0T is imaginary. Thus the conditions developed for T-sections are valid for 
p sections.

CONSTANT—K LOW PASS FILTER17.6

A network, either T or p, is said to be of the constant-k type if Z1 and Z2 of the 
network satisfy the relation

Z1Z2 5 k 2 (17.20)

where Z1 and Z2 are impedances in the T and p sections as shown in Fig. 17.8. 
Equation 17.20 states that Z1 and Z2 are inverse if their product is a constant, 
independent of frequency. k is a real constant, that is the resistance. k is often termed 
as design impedance or nominal impedance of the constant k-filter.

The constant k, T or p type filter is also known as the prototype because other more 
complex networks can be derived from it. A prototype T and p-sections are shown in 
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Fig. 17.8 (a) and (b), where Z1 5 jvL and Z2 5 1/jvC. Hence Z Z L
C

k1 2
2= =  which 

is independent of frequency.

 Z Z k L
C

k L
C1 2

2= = =or  (17.21)

Since the product Z1 and Z2 is constant, the filter is a constant-k type. From 
Eq. 17.18(a) the cut-off frequencies are Z1/4Z2 5 0,
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The pass band can be determined graphically. The reactances of Z1 and 4Z2 will 
vary with frequency as drawn in Fig. 17.9. The cut-off frequency at the intersection 
of the curves Z1 and – 4Z2 is indicated as fc. On the X-axis as Z1 5 –4Z2 at cut-off 
frequency, the pass band lies between the frequencies at which Z1 5 0, and Z1 5 – 4Z2. 

Fig. 17.8

Fig. 17.9
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All the frequencies above fc lie in a stop or attenuation band. Thus, the network is 
called a low-pass filter. We also have from Eq. 17.7 that
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The plots of a and b for pass and stop bands are shown in Fig. 17.10.
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The characteristic impedance 
can be calculated as follows
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Fig. 17.10
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From Eq. 17.23, Z0T is real when f , fc, i.e. in the pass band at f 5 fc, Z0T 5 0; 
and for f . fc, Z0T is imaginary in the attenuation band, rising to infinite reactance at 
infinite frequency. The variation of Z0T with frequency is shown in Fig. 17.11.

Fig. 17.11

Similarly, the characteristic impedance of a p-network is given by

 Z
Z Z
Z

k

f
f

T

c

0
1 2

0
2

1

p = =

−










 (17.24)

The variation of Z0p with frequency is shown in Fig. 17.11. For f , fc, Z0p is real; 
at f 5 fc, Z0p is infinite, and for f . fc, Z0p is imaginary. A low pass filter can be 
designed from the specifications of cut-off frequency and load resistance.

At cut-off frequency, Z1 5 – 4Z2

 j L
j Cc
c

v
v

=
−4

 p2fc2LC 5 1

Also we know that k L C= /  is called the design impedance or the load resistance

∴ k L
C

2 =

 p2fc2 k2C 2 5 1

C
f kc

=
1

p
 gives the value of the shunt capacitance

and L k C k
fc

= =2

p
 gives the value of the series inductance.

Design a low pass filter (both p and T-sections) having a cut-off 
frequency of 2 kHz to operate with a terminated load resistance of 500 V.

Example 17.1

Solution It is given that k L
C

=  5 500 V, and fc 5 2000 Hz
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We know that L k
fc

= =
×

=
p

500

3 14 2000
79 6

.
. mH

 
C

f kc
= =

⋅ ⋅
=

1 1

3 14 2000 500
0 318

�
�

.
. F

The T and p-sections of this filter are shown in Fig. 17.12 (a) and (b) respectively.

Fig. 17.12

CONSTANT K-HIGH PASS FILTER17.7

Constant K-high pass filter can be obtained by changing the positions of series and 
shunt arms of the networks shown in Fig. 17.8. The prototype high pass filters are 
shown in Fig. 17.13, where Z1 5 – j/vC and Z2 5 jvL.

Fig. 17.13

Again, it can be observed that the product of Z1 and Z2 is independent of frequency, 
and the filter design obtained will be of the constant k type. Thus, Z1Z2 are given by

 Z Z j
C
j L L

C
k

k L
C

1 2
2=

−
= =

=

v
v

The cut-off frequencies are given by Z1 5 0 and Z1 5 – 4Z2.

 Z1 5 0 indicates 
j
Cv

= 0 , or v → 

From Z1 5 – 4Z2
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−
= −
j
C

j L
v

v4

 
v2 1

4
LC =

or f
LCc =

1

4p
 (17.25)

The reactances of Z1 and Z2 are sketched as functions of frequency as shown in 
Fig. 17.14.

As seen from Fig. 17.14, the filter 
transmits all frequencies between f 5 fc 
and f 5 . The point fc from the graph is 
a point at which Z1 5 – 4Z2.

From Eq. 17.7,

 

sinh
�

�2 4

1

4
1

2
2

= =
−Z

Z LC

From Eq. 17.25, f
LCc =

1

4p

∴ LC
fc

=
1

4p

∴ sinh
( ) ( )� �

�2

4

4

2 2

2
=

−
=

f
j
f
f

c c

In the pass band,− < <1
4

01

2

Z
Z

, a 5 0 or the region in which 
f
f
c <1  is a pass band 

b =










−2 1sin
f
f
c

In the attenuation band 
Z
Z

f
f
c1

24
1 1< − >, .i.e

 

�

� �

=












=








 = −

−

−

2
4

2

1 1

2

1

cosh

cos ;

Z
Z

f
f
c

The plots of a and b for pass 
and stop bands of a high pass filter 
network are shown in Fig. 17.15.

A high pass filter may be 
designed similar to the low pass 
filter by choosing a resistive load r 
equal to the constant k, such that 

R k L C= = /Fig. 17.15

Fig. 17.14
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 f
L Cc =
1

4p /

 f k
L Ckc = =

4

1

4p p

Since C L
k

= ,

 
L k

f
C

f kc c
= =

4

1

4p p
and

The characteristic impedance can be calculated using the relation

 

Z Z Z Z
Z

L
C LC

Z k
f
f

T

T
c

0 1 2
1

2
2

0

1
4

1
1

4

1

= +










= −








= −

v











2

Similarly, the characteristic impedance of a p-network is given by

Z
Z Z
Z

k
Z

k

f
f

T T

c

0
1 2

0

2

0

2

1

p = =

=

−










 (17.26)

The plot of characteristic 
impedances with respect to frequency 
is shown in Fig. 17.16.

Design a high pass filter having a cut-off frequency of 1 kHz 
with a load resistance of 600 V.

Example 17.2

Solution It is given that RL 5 K 5 600 V and fc 5 1000 Hz

∴ L K
fc

= =
× ×

=
4

600

4 1000
47 74

p p
. mH

 
C

kfc
= =

× ×
=

1

4

1

4 600 1000
0 133

� �
�. F

The T and p-sections of the filter are shown in Fig. 17.17.

Fig. 17.16
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Fig. 17.18

Fig. 17.17

m-DERIVED T-SECTION17.8

It is clear from Figs 17.10 and 17.15 that the attenuation is not sharp in the stop band 
for k-type filters. The characteristic impedance, Z0 is a function of frequency and 
varies widely in the transmission band. Attenuation can be increased in the stop band 
by using ladder section, i.e. by connecting two or more identical sections. In order to 
join the filter sections, it would be necessary that their characteristic impedances be 
equal to each other at all frequencies. If their characteristic impedances match at all 
frequencies, they would also have the same pass band. However, cascading is not a 
proper solution from a practical point of view. This is because practical elements have 
a certain resistance, which gives rise to attenuation in the pass band also. Therefore, 
any attempt to increase attenuation in stop band by cascading also results in an 
increase of ‘a’ in the pass band. If the constant k section is regarded as the prototype, 
it is possible to design a filter to have rapid attenuation in the stop band, and the same 
characteristic impedance as the prototype at all frequencies. Such a filter is called 
m-derived filter. Suppose a prototype T-network shown in Fig. 17.18 (a) has the 
series arm modified as shown in Fig. 17.18 (b), where m is a constant. Equating the 
characteristic impedance of the networks in Fig. 17.18, we have

 Z0T 5 Z0T 9

where Z0T 9 is the characteristic impedance of the modified (m-derived) T-network.

  
Z

Z Z
m Z

mZ Z1
2

1 2

2
1
2

1 2
4 4

+ = + ′
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Z
Z Z

m Z
mZ Z

mZ Z
Z

m Z Z

Z
Z
m

m

1
2

1 2

2
1
2

1 2

1 2
1
2

2
1 2

2
1 2

4 4

4
1

4
1

+ = + ′

′ = − +

′ = −

( )

( )) +
Z
m

2  (17.27)

It appears that the shunt arm ′Z2 consists of two impedances in series as shown in 
Fig. 17.19.

From Eq. 17.27, 1

4

2−m
m

 should be positive 

to realize the impedance ′Z2 physically, 
i.e. 0 , m , 1. Thus m-derived section can be 
obtained from the prototype by modifying its 
series and shunt arms. The same technique can be 
applied to p section network. Suppose a prototype 
p-network shown in Fig. 17.20 (a) has the shunt 
arm modified as shown in Fig. 17.20 (b).

The characteristic impedances of the prototype 
and its modified sections have to be equal for 
matching.

Fig. 17.20

 Z Z0 0p p= ′

where Z90p is the characteristic impedance of the modified (m-derived) p-network.

∴ 
Z Z
Z
Z

Z Z
m
Z
Z m

1 2

1

2

1
2

1

2

1
4

1
4

+
=

′

+
′

⋅ /

Fig. 17.19
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Squaring and cross multiplying the above equation results as under.

 
( )4

4

4
4

1 2 1 1
1 2 1 1

1
1 2

1 1

Z Z mZ Z
Z Z Z Z

m

Z
Z
m

Z
m

mZ Z Z

+ ′ =
′ + ′

′ + −






 = 22

or ′ =
+ −

=
+ −

′ =
−

Z
Z Z

Z
m

Z
m

mZ

Z Z
Z
m

Z
m

m

Z
Z Z m

m
Z

1
1 2

1 2 1

1 2

2 1 2

1

1 2

2

2

4 4

4
1

4

1

( )

( )

22
2

2 1

1
2

2

1
2

2

4

1

4

1

4

1

m
m m

Z m

mZ
Z m
m

mZ
Z m
m( )

( )

( )−
+

=
−

+
−

 (17.28)

It appears that the series arm of the m-derived p section is a parallel combination of 
mZ1 and 4mZ2

 / 1 – m2. The derived m section is shown in Fig. 17.21.

m-Derived Low Pass Filter

In Fig. 17.22, both m-derived low pass T and p filter sections are shown. For the T-section 
shown in Fig. 17.22 (a), the shunt arm is to be chosen so that it is resonant at some 

frequency f above cut-off frequency fc.
If the shunt arm is series resonant, 

its impedance will be minimum or zero. 
Therefore, the output is zero and will 
correspond to infinite attenuation at this 
particular frequency. Thus, at f

1 1

4

2

m C
m
mrv

=
− vr L, where vr is the 

resonant frequencyFig. 17.21

Fig. 17.22
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�

�

r

r

m LC

f
LC m

f

2

2

2

4

1

1

1

=
−

=
−

= ∝

( )

( )

Since the cut-off frequency for the low pass filter is f
LCc =

1

p

 f
f

m
c

 =
−1 2

 (17.29)

or m
f
f
c= −











1

2



 (17.30)

If a sharp cut-off is desired, f should be near to fc. From Eq. 17.29, it is clear 
that for the smaller the value of m, f comes close to fc. Equation 17.30 shows that 
if fc and f are specified, the necessary value of m may then be calculated. Similarly, 
for m-derived p section, the inductance and capacitance in the series arm constitute a 
resonant circuit. Thus, at f a frequency corresponds to infinite attenuation, i.e. at f

m L
m
m

C

LC m

f
LC m

r

r

r

r

�

�

�

�

=
−









=
−

=
−

1

1

4

4

1

1

1

2

2

2

2

( )

( )

Since, f
LCc =

1

p

 f
f

m
fr

c=
−

= ∝
1 2

 (17.31)

Thus for both m-derived low pass networks for a positive value of m (0 , m , 1), 
f . fc. Equations 17.30 or 17.31 can be used to choose the value of m, knowing 
fc and fr. After the value of m is evaluated, the elements of the T or p-networks can 
be found from Fig. 17.22. The variation of attenuation for a low pass m-derived 

section can be verified from a = −2 41
1 2cosh /Z Z  for fc , f , f. For Z1 5 jvL 

and Z2 5 – j/vC for the prototype.

∴ a =

−










−

∝

2

1

1

2
cosh

m f
f

f
f

c
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and b = =

−










−

− −2
4

2

1 1

1 1

1

1

2
2

sin sin

( )

Z
Z

m f
f

f
f

m

c

c

Figure 17.23 shows the variation of a, b and Z0 with respect to frequency for an 
m-derived low pass filter.

Fig. 17.23

Design a m-derived low pass filter having cut-off frequency of 
1 kHz, design impedance of 400 V, and the resonant frequency 1100 Hz.

Example 17.3

Solution k 5 400 V, fc 5 1000 Hz; f 5 1100 Hz

From Eq. 17.30

 

m
f
f
c= −











= −






 =1 1

1000

1100
0 416

2 2



.

Let us design the values of L and C for a low pass, K-type filter (prototype filter). 
Thus,

 

L k
f

C
kf

c

c

= =
×

=

= =
× ×

=

�

400

1000
127 32

1 1

400 1000
0 795

�

� �
�

.

.

mH

F

The elements of m-derived low pass sections can be obtained with reference to 
Fig. 17.22.

Thus the T-section elements are

 mL
2

0 416 127 32 10

2
26 48

3

=
× ×

=
−. .

. mH

 mC 5 0.416 3 0.795 3 10–6 5 0.33 mF
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1

4

1 0 416

4 0 416
127 32 10 63 27

2 2
3−

=
−

⋅
× × =−m

m
L ( . )

.
. . mH

The p-section elements are

 

mC
2

0 416 0 795 10

2
0 165

6

=
× ×

=
−. .

. mF

 

1

4

1 0 416

4 0 416
0 795 10 0 395

2 2
6−

× =
−

×
× × =−m

m
C ( . )

.
. . mF

 mL 5 0.416 3 127.32 3 10–3 5 52.965 mH

The m-derived LP filter sections are shown in Fig. 17.24.

Fig. 17.24

m-derived High Pass Filter

In Fig. 17.25 both m-derived high pass T and p- sections are shown.
If the shunt arm in T-section is series resonant, it offers minimum or zero 

impedance. Therefore, the output is zero and, thus, at resonance frequency, or the 
frequency corresponds to infinite attenuation.

 v

v
r

r

L
m m

m
C

=

−

1

4

1 2

Fig. 17.25
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v vr L
m

m
m
C

m
LC

2 2

2

21

4

1

1

4
= =

−

=
−

∝

 �
�

∝ ∝=
−

=
−1

2

1

4

2 2m
LC

f m
LC

or

From Eq. 17.25, the cut-off frequency fc of a high pass prototype filter is 
given by

 f
LCc =

1

4p

 f f mc∝ = −1 2  (17.32)

 m
f
fc

= −










∝1

2

 (17.33)

Similarly, for the m-derived p-section, the resonant circuit is constituted by the 
series arm inductance and capacitance. Thus, at f

 
4

1

1
2

m
m

L

m
C

r
r−

=v
v

 
v vr

m
LC

2 2
21

4
= =

−
∝

 v∝ =
−1

2

2m
LC

 or f m
LC�

�
=

−1

4

2

Thus, the frequency corresponding to 
infinite attenuation is the same for both 
sections.

Equation 17.33 may be used to 
determine m for a given f and fc. 
The elements of the m-derived high 
pass T or p-sections can be found 
from Fig. 17.25. The variation of a, 
b and Z0 with frequency is shown in 

Fig. 17.26.Fig. 17.26
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Design a m-derived highpass filter with a cut-off frequency of 
10 kHz; design impedance of 5 V and m 5 0.4.

Example 17.4

Solution For the prototype high pass filter,

 
L k

fc
= =

× ×
=

4

500

4 10000
3 978

p p
. mH

 
C

fc
= =

× ×
=

1

4

1

4 500 10000
0 0159

� �
�

k
. F

The elements of m-derived high pass sections can be obtained with reference to 
Fig. 17.25. Thus, the T-section elements are

 

2 2 0 0159 10

0 4
0 0795

6C
m

=
× ×

=
−.

.
. mF

 

L
m

=
×

=
−3 978 10

0 4
9 945

3.

.
. mH

 

4

1

4 0 4

1 0 4
0 0159 10 0 0302

2 2

6m
m
C

−
=

×

−
× × =−.

( . )
. . mF

The p-section elements are

 

2 2 0 0159 10

0 4
19 89

3L
m

=
× ×

=
−.

.
. mH

 

4

1

4 0 4

1 0 4
3 978 10 7 577

2 2

3m
m

L
−

× =
×

−
× × =−.

( . )
. . mH

 

C
m

= × =−0 0159

0 4
10 0 03976.

.
. mF

Fig. 17.26
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Fig. 17.27

T and p sections of the m-derived highpass filter are shown in Fig. 17.27.

BAND PASS FILTER17.9

As already explained in Section 17.1, a band pass filter is one which attenuates 
all frequencies below a lower cut-off frequency f1 and above an upper cut-off 
frequency f2. Frequencies lying between f1 and f2 comprise the pass band, and are 
transmitted with zero attenuation. A band pass filter may be obtained by using a low 
pass filter followed by a high pass filter in which the cut-off frequency of the LP filter 
is above the cut-off frequency of the HP filter, the over lap thus allowing only a band 
of frequencies to pass. This is not economical in practice; it is more economical to 
combine the low and high pass functions into a single filter section.

Consider the circuit in Fig. 17.28, each arm has a resonant circuit with same 
resonant frequency, i.e. the resonant frequency of the series arm and the resonant 
frequency of the shunt arm are made equal to obtain the band pass characteristic.

Fig. 17.28

For this condition of equal resonant frequencies.

 v
v

0
1

0 12

1

2

L
C

=  for the series arm

from which, v2
0 L1C1 5 1 (17.34)

and 1

0 2
0 2

v
v

C
L=  for the shunt arm

from which, v0
2

2 2 1L C =  (17.35)
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v v0
2

1 1 0
2

2 21L C L C= =

 L1C1 5 L2C2 (17.36)

The impedance of the series arm, Z1 is given by

 Z j L j
C

j L C
C1 1

1

2
1 1

1

1
= −











=
−









v
v

v

v

The impedance of the shunt arm, Z2 is given by

 
Z

j L
j C

j L
j C

j L
L C2

2
2

2
2

2

2
2 2

1

1 1
=

+
=

−

v
v

v
v

v

v

 Z Z j L C
C

j L
L C1 2

2
1 1

1

2

2
2 2

1

1
=

−







 −











v

v

v

v

 
=

− −

−













L

C

L C

L C

2

1

2
1 1
2

2 2

1

1

v

v

From Eq. 17.36, L1C1 5 L2C2

 Z Z L
C

L
C

k1 2
2

1

1

2

2= = =

where k is constant. Thus, the filter is a constant k-type. Therefore, for a constant 
k-type in the pass band.

− < <1
4

01

2

Z
Z

, and at cut-off frequency

 Z1 5 – 4Z2

 Z Z Z k1
2

1 2
24 4= − = −

∴ Z1 5  j2k

i.e. the value of Z1 at lower cut-off frequency is equal to the negative of the value 
of Z1 at the upper cut-off frequency.

∴ 1 1

1 1
1 1

2 1
2 1j C

j L
j C

j L
v

v
v

v+










= − +










or v
v v

v1 1
1 1 2 1

2 1

1 1L
C C

L−










= −










 ( ) ( )1 11
2

1 1
1

2
2
2

1 1− = −v
v

v
vL C L C  (17.37)
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From Eq. 17.34, L C1 1

0
2

1
=

v

Hence Eq. 17.37 may be written as

 

1 11
2

0
2

1

2

2
2

0
2

−










= −











v

v

v

v

v

v

( ) ( )

( )

v v v v v v

v v v v v v v v

v v v v

0
2

1
2

2 1 2
2

0
2

0
2

2 1
2

2 1 2
2

1 0
2

0
2

1 2

− = −
− = −

+ = 11 2 2 1

0
2

1 2

v v v

v v v

( )+
=

 f f f0 1 2=  (17.38)

Thus, the resonant frequency 
is the geometric mean of 
the cut-off frequencies. The 
variation of the reactances with 
respect to frequency is shown in 
Fig. 17.29.
Design If the filter is terminated 
in a load resistance R 5 K, then 
at the lower cut-off frequency

1
2

1 1
1 1j C

j L jk
v

+










= −v

 

1
2

1 1
1 1

v
v

C
L k− =

 1 – v2
1C1L1 5 2kv1C1

Since L C1 1

0
2

1
=

v

 
1 21

2

0
2 1 1− =

v

v
vk C

or 1 41

0

2

1 1−










=
f

f
kf Cp

 
1 41

2

1 2
1 1 0 1 2− = =

f
f f

kf C f f fp ( )∵

 f2 – f1 5 4pkf1 f2C1

 C f f
kf f1

2 1

1 24
=

−
p

 (17.39)

Fig. 17.29
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Since L C1 1

0
2

1
=

v

 L
C

kf f
f f1

0
2

1

1 2

0
2

2 1

1 4
= =

−�

�

� ( )

 L k
f f1
2 1

=
−p( )

 (17.40)

To evaluate the values for the shunt arm, consider the equation

 Z Z L
C

L
C

k1 2
2

1

1

2

2= = =

∴ L C k f f k
f f2 1

2 2 1

1 24
= =

−( )

p
 (17.41)

and C L
k f f k2

1

2
2 1

1
= =

−p( )
 (17.42)

Equations 17.39 through 17.42 are the design equations of a prototype band pass 
filter. The variation of a, b with respect to frequency is shown in Fig. 17.30.

Fig. 17.30

Design k-type band pass filter having a design impedance of 
500 V and cut-off frequencies 1 kHz and 10 kHz.

Example 17.5

Solution k 5 500 V; f1 5 1000 Hz; f2 5 10000 Hz

From Eq. 17.40,

 L
k

f f1
2 1

500

9000

55 55
16 68=

−
= = =

p p p( )

.
.mH mH

From Eq. 17.39,

 C
f f

kf f1
2 1

1 24

9000

4 500 1000 10000
0 143=

−
=

× × × ×
=

� �
�. F
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From Eq. 17.41,

 L2 5 C1k2 5 3.57 mH

From Eq. 17.42,

 C
L

k
2

1
2

0 0707= = . mF

Each of the two series arms of the constant k, T-section filter is given by

 
L1

2

17 68

2
8 84= =

.
. mH

 2C1 5 2 3 0.143 5 0.286 mF

And the shunt arm elements of the network are given by

 C2 5 0.0707 mF and L2 5 3.57 mH

For the constant-k, p section filter the elements of the series arm are

 C1 5 0.143 mF and L1 5 16.68 mH

The elements of the shunt arms are

 

C2

2

0 0707

2
0 035= =

.
. mF

 2L2 5 2 3 0.0358 5 0.0716 H 

BAND ELIMINATION FILTER17.10

A band elimination filter is one which passes without attenuation all frequencies less 
than the lower cut-off frequency f1, and greater than the upper cut-off frequency f2. 
Frequencies lying between f1 and f2 are attenuated. It is also known as band stop filter. 
Therefore, a band stop filter can be realized by connecting a low pass filter in parallel 
with a highpass section, in which the cut-off frequency of low pass filter is below that 
of a high pass filter. The configurations of T and p constant k band stop sections are 
shown in Fig. 17.31. The band elimination filter is designed in the same manner as is 
the band pass filter.

Fig. 17.31
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As for the band pass filter, the series and shunt arms are chosen to resonate at 
the same frequency v0. Therefore, from Fig. 17.31 (a), for the condition of equal 
resonant frequencies

 
v

v
0 1

0 12

1

2

L
C

=  for the series arm

or v0
2

1 1

1
=
L C

 (17.43)

 v
v

0 2
0 2

1L
C

=  for the shunt arm

 v0
2

2 2

1
=
L C

 (17.44)

 

1 1

1 1 2 2L C L C
k= =

Thus L1C1 5 L2C2 (17.45)

It can be also verified that

 Z Z L
C

L
C

k1 2
1

2

2

1

2= = =  (17.46)

and f f f0 1 2=  (17.47)

At cut-off frequencies, Z1 5 – 4Z2

Multiplying both sides with Z2, we get

 

Z Z Z k

Z j
k

1 2 2
2 2

2

4

2

= − =

= ±  (17.48)

If the load is terminated in a load resistance, R 5 k, then at lower cut-off frequency

 Z j
C

L j k2
1 2

1 2

1

2
= −











=
v

v

 
1

21 2
1 2

v
v

C
L k

− =

 1
2

1
2

2 2 1 2− =v vC L C k

From Eq. 17.44, L C2 2

0
2

1
=

v



Filters and Attenuators 841

 1
2

1
2

0
2 1 2− =

v

v
v
k C

 1 1

0

2

1 2−










=
f
f

k f Cp

 C
k f

f
f2

1

1

0

2
1

1= −
























p

Since f f f0 1 2=

 
C

k f f2
1 2

1 1 1
= −











p

 C
k

f f
f f2

2 1

1 2

1
=

−









p
 (17.49)

From Eq. 17.44, v0
2

2 2

1
=
L C

 L
C

kf f
f f2

0
2

2

1 2

0
2

2 1

1
= =

−�

�

� ( )

Since f f f0 1 2=

 L k
f f2
2 14

=
−p( )

 (17.50)

Also from Eq. 17.46,

 k L
C

L
C

2 1

2

2

1

= =

∴ L k C k f f
f f1

2
2

2 1

1 2

= =
−







p
 (17.51)

and C
L

k

k f f

1
2
2

2 1

1

4

=

=
−p ( )

 (17.52)

The variation of the reactances 
with respect to frequency is shown 
in Fig. 17.32.

Equation 17.49 through Eq. 17.52 
are the design equations of a prototype 
band elimination filter. The variation 
of a, b with respect to frequency is 
shown in Fig. 17.33.

Fig. 17.32
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Fig. 17.33

Design a band elimination filter having a design impedance of 
600 V and cut-off frequencies f1 5 2 kHz and f2 5 6 kHz.

Example 17.6

Solution (  f2 – f1) 5 4 kHz

Makinkg use of the Eqs 17.49 through 17.52 in Section 17.10, we have

 L k f f
f f1

2 1

2 1

600 4000

2000 6000
63=

−









=
×

× ×
=

p p
mH

 C
k f f1

2 1

1

4

1

4 600 4000
0 033=

−
=

× ×
=

� �
�

( ) ( )
. F

 L
k f f2

2 1

1

4

600

4 4000
12=

−
= =

p p( ) ( )
mH

C
k

f f
f f2

2 1

1 2

1 1

600

4000

2000 6000
0 176=

−










=

× ×












=

� �
�. FF

Each of the two series arms of the constant k, T-section filter is given by

 
L1

2
31 5= . mH

 2C1 5 0.066 mF

And the shunt arm elements of the network are

 L2 5 12 mH and C2 5 0.176 mF

For the constant k, p-section filter the elements of the series arm are

 L1 5 63 mH, C1 5 0.033 mF

and the elements of the shunt arms are

 2L2 5 24 mH and 
C2

2
0 088= . mF



Filters and Attenuators 843

ATTENUATORS17.11

An attenuator is a two-port resistive network and is used to reduce the signal level by a given 
amount. In a number of applications, it is necessary to introduce a specified loss between 
source and a matched load without altering the impedance relationship. Attenuators may be 
used for this purpose. Attenuators may be symmetrical or asymmetrical, and can be either 
fixed or variable. A fixed attenuator with constant attenuation is called a pad. Variable 
attenuators are used as volume controls in radio broadcasting sections. Attenuators are also 
used in laboratory to obtain small value of voltage or current for testing circuits.

The increase or decrease in power due to insertion or substitution of a new element 
in a network can be conveniently expressed in decibels (dB), or in nepers. In other 
words, attenuation is expressed either in decibels (dB) or in nepers. Accordingly, the 
attenuation offered by a network in decibels is

 Attenuation in dB =










10 10
1

2

log
P
P

 (17.53)

where P1 is the input power and P2 is the output power.
For a properly matched network, both terminal pairs are matched to the 

characteristic resistance, R0 of the attenuator.

Hence, 
P
P

I R
I R

I
I

1

2

1
2

0

2
2

0

1
2

2
2

= =  (17.54)

where I1 is the input current and I2 is the output current leaving the port.

or 
P
P

V
V

1

2

1
2

2
2

=  (17.55)

where V1 is the voltage at port 1 and V2 is the voltage at port 2

 Hence, attenuation in dB =










20 10
1

2

log
V
V

 (17.56)

 =










20 10
1

2

log
I
I

 (17.57)

If V
V

I
I

N1

2

1

2

= =  (17.58)

then 
P
P

N1

2

2=

and dB 5 20 log10 N (17.59)

or N =






antilog

dB

20
 (17.60)

T-TYPE ATTENUATOR17.12

Basically, there are four types of attenuators, T, p, lattice and bridged T-type. The 
basic design principles are discussed in the following Sections. Figure 17.34 shows 
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the symmetrical T-attenuator. An attenuator is to be designed for desired values of 
characteristic resistance, R0 and attenuation.

The values of the arms of the network 
can be specified in terms of characteristic 
impedance, Z0, and propagation constant, 
g, of the network. The network in the figure 
is a symmetrical resistive circuit; hence 
Z0 5 R0 and g 5 a. The design equations 
can be obtained by applying Kirchhoff’s 
law to the network in Fig. 17.34.

 R2 (I1 – I2) 5 I2 (R1 1 R0)

 I2 (R2 1 R1 1 R0) 5 I1R2

 
I
I

R R R
R

N1

2

1 0 2

2

=
+ +

=  (17.61)

The characteristic impedance of the attenuator is R0 when it is terminated in a load of R0

Hence, R R
R R R
R R R0 1

2 1 0

1 0 2

= +
+

+ +
( )

Substituting Eq. 17.61, we have

 R R
R R
N0 1

1 0= +
+( )

 NR0 5 NR1 1 R1 1 R0

 R0(N – 1) 5 R1 (N 1 1)

 R
R N
N1

0 1

1
=

−
+

( )
 (17.62)

From Eq. 17.61, we have

 NR2 5 R1 1 R0 1 R2

 (N – 1)R2 5 (R1 1 R0)

Substituting the value of R1 from Eq. 17.62, we have

 ( )
( )N R R N
N

R− =
−
+

+1
1

1
2 0 0

 ( )
( )

N R
NR
N

− =
+

1
2

1
2

0

 R
NR
N2

0

2

2

1
=

−
 (17.63)

Equations 17.62 and 17.63 are the design equations for the symmetrical T-attenuator.

Fig. 17.34
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Design a T-pad attenuator to give an attenuation of 60 dB and 
to work in a line of 500 V impedance.

Example 17.7

Solution N I
I

D
= =1

2 20
antilog

 
= =antilog

60

20
1000

Each of the series arm is given by

 R
R N
N1

0 1

1
500

1000 1

1000 1
499=

−
+

=
−
+

=
( ) ( )

( )
V

The shunt arm resistor R2 is given by

 R N
N

R2 2 0 2

2

1

2 1000

1000 1
500 1=

−
= =

×

−
× =

( )
V

p-TYPE ATTENUATOR17.13

Figure 17.35 shows symmetrical attenuator. The series and shunt arm of the attenuator 
can be specified in terms of Z0 and propagation constant g. In this case also, the 
network is formed by resistors and is symmetrical, hence Z0 5 R0 and g 5 a. From 
the fundamental equations, we have

 R1 5 R0 sinh a (17.64)

 R2 5 R0 coth a/2 (17.65)

∴ R R e e
1 0

2
=

− −a a

 (17.66)

By definition of propagation constant

e I
I

Ng = =1

2

Here g 5 a and ea 5 N

Therefore, Eq. 17.66 can be written as

 R R
N

N R N
N1 0 0

2
1

2

1

2
=

−
=

−
 (17.67)

Similarly, from Eq. 17.65,

 R R R e e
e e2 0 0

2 2

2 2

2

2
= =

+

−

−

−

cosh /

sinh /

/ /

/ /

a

a

a a

a a

 R R e
e

R N
N2 0 0

1

1

1

1
=

+

−
=

−( )

+

a

a ( )
 (17.68)

Equations 17.67 and 17.68 are the design equations for the symmetrical p-attenuator.

Fig. 17.35
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Design a p-type attenuator to give 20 dB attenuation and to 
have a characteristic impedance of 100 V.

Example 17.8

Solution Given R0 5 100 V, D 5 20 dB.

 N 5 Antilog D
20

10=

 R R N
N1 0

2 21

2
100

10 1

2 10
495=

−
=

−
+

=
( ) ( )

V

 R R N
N2 0

1

1
100

10 1

10 1
122 22=

+
−

=
+
−







 =

( )

( )
. V

LATTICE ATTENUATOR17.14

A symmetrical resistance lattice is 
shown in Fig. 17.36. The series and 
the diagonal arm of the network 
can be specified in terms of the 
characteristic impedance Z0 and 
propagation constant g.

It has already been stated and 
proved that characteristic impedance 
of symmetrical network is the 
geometric mean of the open and short 

circuit impedance. The circuit in Fig. 17.36 is redrawn as in Fig. 17.37 to calculate the 
open and short circuit impedances.

Fig. 17.36

Fig. 17.37

Thus, Z R R
R Rsc =

+
2 1 2

1 2

 Z R R
c0

1 2

2
=

+

Hence, Z R Z Zc sc0 0 0= =

 
R R R0 1 2=
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In Fig. 17.37 the input impedance at 1-19 is R0 when the network is terminated in 
R0 at 2-29. By applying Kirchhoff’s voltage law, we get

 V1 5 I1R0 5 (I1 – I )R1 1 I2R0 1 (1 1 I2)R1

 I1R0 5 R1(I1 1 I2) 1 I2R0

 I1(R0 – R1) 5 I2(R1 1 R0)

 I
I

R R
R R

R
R
R
R

1

2

1 0

0 1

1

0

1

0

1

1

=
+
−

=
+

−

 (17.69)

 N e I
I

R
R
R
R

= = =
+

−

a 1

2

1

0

1

0

1

1

 (17.70)

 e
R R
R R

a =
+

−

1

1

1 2

1 2

/

/

The propagation constant a =

+

−

























log

1

1

1

2

1

2

R
R
R
R

 (17.71)

From Eq. 17.70

 N R
R

R
R

1 11

0

1

0

−










= +










 R R N
N1 0

1

1
=

−
+

( )

( )
 (17.72)

Similarly, we can express R R N
N2 0

1

1
=

+
−

( )

( )
 (17.73)

Equations 17.72 and 17.73 are the design equations for lattice attenuator.

Design a symmetrical lattice attenuator to have characteristic 
impedance of 800  V and attenuation of 20 dB.

Example 17.9

Solution Given R0 5 800 V and D 5 20 dB

 
N D

= = =antilog antilog
20

20

20
10

From the design equations of lattice attenuator
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Series arm resistance R R N
N1 0

1

1
=

−
+

( )

( )

=
−
+

=800
10 1

10 1
654 545

( )

( )
. V

Diagonal arm resistance R R N
N2 0

1

1
=

+
−

( )

( )

=
+
−

=800
10 1

10 1
977 777

( )

( )
. V

The resulting lattice attenuator is shown in 
Fig. 17.38.

BRIDGED-T ATTENUATOR17.15

A bridged-T attenuator is shown in 
Fig. 17.39. In this case also since the 
attenuator is formed by resistors only, 
Z0 5 R0 and g 5 a. The bridged-T 
network may be designed to have any 
characteristic resistance R0 and desired 
attenuation by making RA RB 5 R2

0. 
Here RA and RB are variable resistances 
and all other resistances are equal to 
the characteristic resistance R0 of the 
network.

A symmetrical resistance lattice network 
can be converted into an equivalent T,
p or bridged-T resistance network using the 
bisection theorem. We can obtain the design 
equations of the bridged-T attenuator by 
bisection theorem. A bisected half sections 
is shown in Fig. 17.40. According to the 
bisection theorem, a network having mirror 
image symmetry can be reduced to an 
equivalent lattice structure. The series arm 
of the equivalent lattice is found by bisecting 

the given network into two parts, short circuiting all the cut wires and equating the series 
impedance of the lattice to the input impedance of the bisected network; the diagonal arm 
is equal to the input impedance of the bisected network when cut wires are open circuited.

From Fig. 17.40, when the cut wires A, B, C are shorted, the input resistance of 
the network is given by

 R
R R
R R

R R
R Rsc

A

A

A

A
=

×
+

=
+

0 2

0 2

0

02

/

/

 (17.74)

Fig. 17.38

Fig. 17.40

Fig. 17.39
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This resistance is equal to the series arm resistance of the lattice network shown 
in Fig. 17.36.

∴ R R
R R

RA

A

0

0
1

2 +
=  (17.75)

From Eq. 17.72, we have

 
R R N

N1 0

1

1
=

−
+

( )

( )

Hence, 
R R
R R

R N
N

A

A

0

0
0

2

1

1( )

( )

( )+
=

−
+

From which RA 5 R0 (N – 1) (17.76)

From Fig. 17.40, when the cut wires A, B, C are open, the input resistance of the 
network is given by

 R0c 5 (R0 1 2RB) (17.77)

This resistance is equal to the diagonal arm resistance of the lattice network shown 
in Fig. 17.36.

∴ R0 1 2RB 5 R2 (17.78)

From Eq. 17.73, we have

 R R N
N2 0

1

1
=

+
−

( )

( )

Hence ( )
( )

( )
R R R N

NB0 02
1

1
+ =

+
−

 From which R
R
NB =

−
0

1
 (17.79)

Equations 17.76 and 17.79 are the design equations for bridged-T attenuator.

Design a symmetrical bridged T - attenuator with an attenuation 
of 20 dB and terminated into a load of 500 V.

Example 17.10

Solution D 5 20 dB; R0 5 500 V

N D
= = =antilog antilog

20

20

20
10

RA 5 R0 (N – 1) 5 500 (10 – 1) 5 4500 V

R
R

NB =
−

=
−

=0

1

500

10 1
55 555

( ) ( )
. V

The desired configuration of the 
attenuator is shown in Fig.17.41.

Fig. 17.41
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L-TYPE ATTENUATOR17.16

An L-type asymmetrical attenuator is shown in Fig. 17.42. The attenuator is connected 
between a source with source resistance Rs 5 R0 and load resistance RL 5 R0.

The design equations can be obtained by applying simple laws.

V2 5 (I1 – I2)R2 5 I2RL

or I1R2 5 I2(R2 1 RL)

I
I

R R
R

NL1

2

2

2

=
+

=  (17.80)

 1
2

+ =
R
R

NL

R R
N

L
2

1
=

−
 (17.81)

As RL 5 R0, Eq. 17.81 can be written as

R
R
N2

0

1
=

−
 (17.82)

The resistance of the network as viewed from 1-19 into the network is

R R
R R
R R0 1

2 0

2 0

= +
+

 R
R

R R1
0
2

2 0

=
+

 (17.83)

Substituting the value of R2 from Eq. 17.82, we have

 R
R

R
N

R

R N
R R N1

0
2

0
0

0
2

0 0

1

1

1
=

−
+

=
−

+ −
( )

( )

 R R N
N1 0

1
=

−( )
 (17.84)

Equations 17.82 and 17.84 are the design equations. Attenuation N of the network 
can be varied by varying the values of R1 and R2.

Design a L-type attenuator to operate into a load resistance of 
600 V with an attenuation of 20 dB.

Example 17.11

Solution N 5 antilog dB

20
 5 antilog 20

20
 5 10

The series arm of the attenuator is given by

 R R N
N1 0

1
600

10 1

10
540=

−





 =

−





 = V

Fig. 17.42
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The shunt arm of the attenuator 
is given by

R
R
N2

0

1

600

9
66 66=

−
− = . V

The desired configuration 
of the network is shown in 
Fig. 17.43.

EQUALIZERS17.17

Equalizers are networks designed to provide compensation against distortions that 
occur in a signal while passing through an electrical network. In general, any electrical 
network has attenuation distortion and phase distortion. Attenuation distortion occurs 
due to non-uniform attenuation against frequency characteristics. Phase distortion 
occurs due to phase delay against frequency characteristics. An attenuation equalizer is 
used to compensate attenuation distortion in any network. These equalizers are used in 
medium to high frequency carrier telephone systems, amplifiers, transmission lines and 
speech reproduction, etc. A phase equalizer is used to compensate phase distortion in 
any network. These equalizers are used in TV signal transmission lines and in facsimile.

INVERSE NETWORK17.18

The geometrical mean of two impedances Z1 and Z2 is a real number and they are 
said to be inverse if

 Z Z R1 2 0
2=

where R0 is a resistance
Consider Z1 5 R1 and Z2 5 R2
The product Z1 Z2 is a real number
Therefore, the two impedances are said to be inverse if they 

satisfy the relation Z1Z2 5 R1R2 5 R 0
2.

In another case, consider Z1 5 jvL and Z
j C2

1
=

v

Z Z j L
j C

L
C1 2 = =

v

v

The product Z1Z2 is a real number
Therefore, the two impedances are inverse.
Similarly,

 Let Z1 5 R1 1 jvL (17.85)

and Z
R
j C

R
j C

jR
CR j

CR j
CR j2

2

2

2

2

2

2

1

1
=

+
=

−
−

⋅
+
+

v

v

v

v

v
 (17.86)

Fig. 17.44

Fig. 17.45

Fig. 17.43
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 =
−

+

R j CR
C R

2 2
2

2 2
2
21

v

v

 Z Z R j L R j CR
C R1 2 1

2 2
2

2 2
2
21

= +
−

+











( )v
v

v

 =
+ + −

+

R R R LC j LR CR R
C R

1 2
2

2
2

2 1 2
2

2 2
2
21

v v v

v

( )
 (17.87)

The imaginary part of the above equation must be zero.

Therefore, we get vLR2 5 vCR1R2
2

L
C

R R R= =1 2 0
2  (17.88)

The two impedances Z1 and Z2 are inverse, when the above condition is satisfied.
An inverse network may be obtained by
(i) Converting each series branch into parallel branch and vice-versa.

(ii) Converting each resistance element R into a corresponding resistive element R
R
0
2

.

(iii) Converting each inductance L into capacitance C L
R

1

0
2

= .

(iv) Converting each capacitance C into inductance L CR1
0
2= .

Obtain the inverse network of the network shown in Fig. 17.46.

Fig. 17.46

Example 17.12

Solution The parallel branch is converted into a series branch and vice-versa. The 
capacitance is replaced by inductance and vice-versa. The resistance is replaced by 
another resistance as shown in Fig. 17.47.

Fig. 17.47
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Where C L
R

iL C R R
R
R1

1 1

0
2 1

1
1 0

2
1
1 0

2

1

= = =, ,

 C L
R

iL C R R
R
R2

1 2

0
2 2

1
2 0

2
2
1 0

2

2

= = =, ,

 C
L
R3

1 3

0
2

= and R0 5 design impedance.

SERIES EQUALIZER17.19

The series equalizer is a two 
terminal network connected 
in series with a network to be 
corrected. (see Fig. 17.48)

Let  N 5  Input to output 
power ratio of the 
load

 D 5  Attenuation in 
decibels

 R0 5 Resistance of the load as well as source
 P1 5 Input power
 P1 5 Load power
 2X1 5 Reactance of the equalizer
 Vmax 5 Voltage applied to the network

Attenuation D 5 log10 N

 or N 5 antilog D
10









 (17.89)

N =
Maximum power delivered to the load whenequlizer is not present

Powwer delivered to the load whenequalizer is present

N
P
P
i

l
=

P
V
R

R
V
Ri =











=max max

2 40

2

0

2

0

When the equalizer is connected,

 l
V

R X
1

0
2

1
22 2

=
+

max

( ) ( )

 P
V

R X
Rl =

+

















max

( ) ( )2 20
2

1
2

2

0

Fig. 17.48
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 =
+

















V
R X

Rmax

( )

2

0
2

1
2 0

4
 (17.90)

Therefore, N
P
P

V R
V R
R X

X
R

i

l
= =

+

= +max

max

/

( )

2
0

2
0

0
2

1
2

1
2

0
2

4

4

1  (17.91)

By knowing the values of R0 and N, X1 can be determined.

FULL SERIES EQUALIZER17.20

Figure 17.49 shows the configuration of full series equalizer.

Fig. 17.49

The circuit is a constant resistance equalizer satisfying the relation Z Z R1 2 0
2= . 

The input impedance is given by

 Z
R Z
R Z

R Z
R Zi =

+
+

+
0 1

0 1

0 2

0 2

 =
+ +

+ + +

R Z Z R Z Z
R R Z Z Z Z

0 1 2 0 1 2

0
2

0 1 2 1 2

2[ ( )]

( )
 (17.92)

If we substitute Z Z R1 2 0
2=  in the above equation

 Zi 5 R0

 |Vi| 5 IiZi 5 Ii R0

| |V I Z I
R Z
R Zl i i i= =

+
0 2

0 2

 (17.93)

 N
V
V

R Z
Z

R
X

i

l
= =

+
= +

2

0 2

2

2

0
2

2
2

1  (17.94)

 = +1 1
2

0
2

X
R



Filters and Attenuators 855

Since Z1 and Z2 are pure reactances and X1X2 5 R 0
2

(i) When X1 5 vL,

 X
C2

1

1
=

v
 since both are inverse

The full series equalizer is 
shown in Fig. 17.50.

Where 
L
C

R1

1
0
2=

From the equation

N X
R

= +1 1
2

0
2

 = +1
2

1
2

0
2

v L
R

By knowing the values of N and R0, the elemental values of L1, C1 may be obtained.

(ii) When X
C1

1

1
=

v
,

 X2 5 vL1

The full series equalizer is 
shown in Fig. 17.51.

Here 
L
C

R1

1
0
2=

From the equation 

N
R
X

R
L

= + = +1 10
2

2
2

0
2

2
1
2v

By knowing the values of N and R0, the values of L1, C1 may be obtained.

SHUNT EQUALIZER17.21

The shunt equalizer is a two terminal network connected in shunt with a network to 
be corrected.

 Let N 5 Input to output power ratio
 D 5 Attenuation in decibels
 R0 5 Source resistance/load resistance
 Is 5 Source current
 Il 5 Load current
 Pi 5 Input power
 Pl 5 Load power

X1

2
 5 Reactance of shunt equalizer

Fig. 17.50

Fig. 17.51
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The shunt equalizer connected to 
the network is shown in Fig. 17.52.

Source current 

I
V

R R
jXs =

+








max

/ /0 0
1

2

 (17.95)

 =
+

+













V

R jX R
R jX

max

0
1 0

0 12

 =
+

+
V R jX
R R jX

max[ ]

( )

2

2

0 1

0 0 1

Load current I I jX

R jX
I jX

R jXl s s=
+

=
+

1

0
1

1

0 1

2

2

2

/
 (17.96)

Substituting Is in the above equation

 I
V jX
R R jXl =

+
max

( )

1

0 0 12
 (17.97)

Power delivered to the load

 P I R
V X
R R Xl l= =

+
| |

( )

max2
0

2
1
2

0 0
2

1
24

 (17.98)

and P V Ri = max /2
04

Therefore, N
P
P

V
R

V X
R R X

i

l
= =

+

max

max

( )

2

0

2
1
2

0 0
2

1
2

4

4

∴ N
R
X

= +










1 0

1

2

 (17.99)

By knowing the values of R0 and N, X1 can be determined.

FULL SHUNT EQUALIZER17.22

Figure 17.53 shows the full shunt equalizer. It is also a constant resistance equalizer 
which satisfies the equation Z1Z2 5 R2

0.

Fig. 17.52
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Fig. 17.53

The input impedance is given by

Z
R Z R Z
R Z Zi =
+ +

+ +
( )( )0 2 0 1

0 1 22
 (17.100)

 =
+ + +

+ +
Z Z R R Z Z

R Z Z
1 2 0

2
0 1 2

0 1 22

( )

 Zl 5 R0

Since Z1Z2 5 R0
2,

 Vi 5 IiZi 5 IiR0

 Vl 5 Il R0

 
V
V

I
I

i

l

i

l
=

But I I
R Z

R Z Zl i=
+

+ +
( )0 2

0 1 22
 (17.101)

 
I
I

Z Z R
R Z

i

l
=

+ +
+

1 2 0

0 2

2
 (17.102)

Multiplying both numerator and denominator by Z1, we get

I
I

Z Z Z R Z
Z R Z Z

i

l
=

+ +
+

1
2

1 2 0 1

1 0 1 2

2

I
I

Z R
R Z R

Z R
R

i

l
=

+
+

=
+( )

( )

1 0
2

0 1 0

1 0

0

Therefore, N
V
V

I
I

R Z
R

i

l

i

l
= = =

+2 2

0 1

0

2

 N X
R

R
X

= + = +1 11
2

0
2

0
2

2
2

 (17.103)

since Z1 and Z2 are pure reactances and are equal to X1 and X2 respectively.
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 By knowing the values or R0 and N1 the elemental values X1 and X2 can be 
obtained.

(i) When X1 5 vL1

 X2 becomes 
1

1vC
 The circuit is shown in Fig. 17.54.

Fig. 17.54

(ii) When X
C1

1

1
=

v

 X2 becomes vL1

 The circuit is shown in Fig. 17.55.

Fig. 17.55

CONSTANT RESISTANCE EQUALIZER17.23

The disadvantage of a reactance equalizer either in a shunt equalizer or a series 
equalizer is that, the variation of impedance with frequency causes impedance 
mismatch which results in reflection losses. A four terminal equalizer which offers 
a constant resistance at all frequencies avoids reflection loss when terminated in its 
design impedance. Constant resistance equalizer is a four terminal network which 
can be T, p, lattice and bridged-T network type. All these types have characteristic 
impedance satisfying the relation Z1Z2 5 R0

2.

BRIDGE-T ATTENUATION EQUALIZER17.24

The network shown in Fig. 17.56 is a bridged-T attenuation equalizer. Let Z1 be 
a parallel combination of resistor R1 and inductance L1. To provide a constant 
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resistance the impedance Z2 must be an inverse of Z1 which is a series combination 
of R2 and a capacitor C1. Let R0 be the design resistance.

Then, Z1Z2 5 R0
2

Fig. 17.56 Bridged-T attenuation equalizer

The propagation constant for a bridged-T network is given by

g = +











= +













ln ln1 11

0

0

2

Z
Z

Z
Z

 (17.104)

 But Z0 5 R0

 And Z jR L
R L1

1 1

1 1

=
+

v

v
 (17.105)

Therefore, the propagation constant

�
�

�
= +

+













ln
( )

1 1 1

0 1 1

jR L
R R j L

 (17.106)

 � �
�

�
+ =

+ +
+













j
R R j L R R
R R j L R

ln
( )0 1 1 0 1

0 1 1 0

 (17.107)

Equating real parts on both sides

�
� � �

�
=

+ + +

+





ln
( )R R L R L R L R R

R R L R
0 1

2 2
1
2

0
2 2

1
2

1
2 2

1
2

0 1

2
1
2 2

1
2

0
2

2

0












1 2/

 = +
+

+

















1

2
1

22
1
2

1 0 1

0
2

1
2 2

1
2

ln
( )

( )

v

v

L R R R
R R L

 (17.108)

and R R R L
C1 2 0

2 1

1

= =  (17.109)

The elements may be calculated from the above design Eqs (17.108) and (17.109).



860  Circuits and Networks

BRIDGED-T PHASE EQUALIZER17.25

A bridged-T phase equalizer is shown in Fig. 17.57.

Fig. 17.57

It consists of only pure reactances.
The characteristics impedance is given by

 Z
Z Z Z Z

Z Z0
1 3 1 2

1 3

1 2
4

4
=

+
+













( )

( )

/

 (17.110)

From the Fig. 17.57, Z3 5 jX3,
Z jX1

1
2

= , Z2 5 jX2 and Z0 5 R0.

R
jX jX jX jX

jX jX0
2 1 3 1 2

1 3

2 2 4

4 2 4
=

⋅ +
+

( )

( )
 (17.111)

 =
− +

+
X X X X

X X
1 3 1 2

1 3

2

2

( )

Let X1 and X3 be made inverse

jX jX R1 3 0
2. =

 − =X X R1 3 0
2

 (17.112)

Substituting this in the above equation, we get

 X
X X

2
1 3

2
=

+
 (17.113)

The propagation constant is given by

 e
Z Z Z Z Z
Z Z Z Z Z

g =
+ +
+ −

0 1 3 1 3

0 1 3 1 3

2

2

( ) ( / )

( ) ( / )
 (17.114)

 e
Z Z

Z Z Z Z Z
g − =

+ −
1

2

1 3

0 1 3 1 3( ) ( / )
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and similarly,

 e
Z Z Z

Z Z Z Z Z
g + =

+

+ −








1
2

2

0 1 3

0 1 3
1 3

( )

( )

From the above equations

e
e

Z Z
Z Z Z

jX jX
R jX jX

g

g

g−

+
= =

+
=

⋅
+

1

1 2 2

2

2 2

1 3

0 1 3

1 3

0 1 3

tanh
( ) ( )

 =
+

2

2 2

0
2

0 1 3

R
R j X X( )

 (17.115)

 tanh
g

2

2

2 2

0
2

0 1
0
2

1

=

−










R

R j X R
X

 
g

2 2

1 0 1

0
2

1
2

=
−

−tanh
jR X

R X

∴ � �+ =
−

−j j
R X

R X
2

2

1 0 1

0
2

1
2

tan

Equating the real and imaginary parts, we get

 a 5 0

 b =
−











−2
2

1 0 1

0
2

1
2

tan
R X

R X
 (17.116)

Equations 17.112, 17.113 and 17.116 are the design equations of a bridged-T phase 
equalizer.

LATTICE ATTENUATION EQUALIZER17.26

The constant resistance lattice attenuation equalizer is shown in Fig. 17.58. The element 
Z1 represents series arm and Z2 represents diagonal arm as shown in Fig. 17.58. The 
equalizer is a constant resistance equalizer such that Z1 must be inverse of Z2 to the 
design resistance R0.

Fig. 17.58
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Z1Z2 5 R0
2

R R L
C
R1 2

1

1
0
2=  (17.117)

The propagation constant of a lattice network is given by

 g =
+

−













=
+

−



ln ln

1

1

1

1

1

0

1

0

2

0

2

0

Z
R
Z
R

Z
R

Z
R









 (17.118)

� �

�

�
+ =

+
+

−
+













j

R j L
R

R j L
R

ln

1

1

1 1

0

1 1

0

 (17.119)

� �
�

�
+ =

+ +
− −













j
R R j L
R R j L

ln
( )

( )

0 1 1

0 1 1

Equating real parts on both sides

 �
�

�
=

+ +

− +

















ln
( )

( )

/
R R L
R R L

0 1
2 2

1
2

0 1
2 2

1
2

1 2

 N e
R R L
R R L

= =
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− +








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

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/

0 1
2 2

1
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0 1
2 2

1
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1 2

 (17.120)

On the other hand if X
C1

1

1
=

v

 N e
R R

C

R R
C

= =

+ +

− +























� �

�

( )

( )

/

0 1
2

2
1
2

0 1
2

2
1
2

1 2
1

1
 (17.121)

Equations (17.117) and (17.121) are called design equations for the lattice 
attenuator network.

LATTICE PHASE EQUALIZER17.27

The lattice phase equalizer is shown in Fig. 17.59. It consists of only reactive 
components. This is also a constant resistance equalizer which satisfies the equation 
Z1Z2 5 R2

0.

Z1 is the series arm impedance and Z2 is the shunt arm impedance as shown in 
Fig. 17.59.
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Fig. 17.59

The propagation constant is given by

tanh
g

2

1

0

1

2







 =


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
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� �
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� �
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�
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�
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−





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





−2
1

1 1
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2

1 1

tan
( )

L
R L C

The above expression gives the phase delay in a lattice phase equalizer.

Additional Solved Problems

 

Design a low pass p-section filter with a cut-off frequency of 
2 kHz to operate with a load resistance of 400 V.

Problem 17.1
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Solution The p-section low pass filter is shown in Fig. 17.60.

Cut-off frequency fc 5 2 kHz
Load resistance K 5 400 V 5 RL

Inductance 

L
K

fc

= =
× ×

=
p p

400

2 10
63 66

3
. mH

Capacitance 

C
K fc

= =
× × ×

=
1 1

400 2 10
0 3978

3� �
�. F

Design an m-derived low pass filter having cut-off frequency of 
1.5 kHz with a nominal impedance of 500 V, and resonant frequency is 1600 Hz.

Problem 17.2

Solution we have fc 5 1.5 kHz ; k 5 500 V, and fa 5 1600 Hz

For an m - derived section, the value of m
f
f
c= −











1

2

a

 
= −

×







 =1

1 5 10

1600
0 3479

3
2

.
.

For the prototype low pass section L k
fc

=
p

 
=

× ×
=

500

1 5 10
0 1061

3p .
. H = z1

 C kfc

= =
× × ×

= =
1 1

500 1 5 10
0 4244

3� �
�

.
. F  z

The T-section elements are

 
mz mL1

2 2

0 3479 0 1061

2
18 45= =

×
=

. .
. mH

 mz 5 mc 5 0.3479 3 0.4244 3 106 5 0.147 mF

 and mH
1

4

1

4
6

2

1

2−







 =

−







 =

m
m

z m
m

L

The p - section elements are

 
mc

2

0 3479 0 4244 10

2
0 0738

6

=
× ×

=
−. .

. mF

 mL 5 0.3479 3 0.1061 5 36.91 mH

 and F
1

4
0 268

2−







 =

m
m

c . m

Fig. 17.60
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The filter sections are shown in Fig. 17.61

Fig. 17.61

Design a band elimination filter having a design impedance of 
500 V and cut-off frequencies f1 5 1 kHz and f2 5 5 kHz.

Problem 17.3

Solution We have f1 5 1 kHz ; f2 5 5 kHz ; k 5 500 V

and kHz

B  = kHz

0f f f

f f

= =

− =

1 2

2 1

2 236

4

.

v

 
L k f f

f f1
2 1

1 2

3

3 3

500 4 10

1 10 5 10
0 127=

−
=

× ×

× × × ×
=

( )
.

p p
H

C
k f f1

2 1
3

81

4

1

4 500 4 10
3 971 10=

−
=

× × ×
= × −

p p( ) ( )
. F

L k
f f2
2 1

34

500

4 4 10
9 94=

−
=

× × ×
=

p p( )
. mH

 
C f f

k f f2
2 1

2 1

3

3 3

1 4 10

500 10 5 10
0 5=

−
=

×

× × × ×
=

( )

( )
.

� �
�F

Each of the two series arms of the constant K, T-section filter is given by
L

C1

2
63 5 0 08= =. .mH; 2 F1 m  and the shunt arm elements of the network are

L2 5 9.9 mH; C2 5 0.5 mF

For constant K, p section filter, the elements of the series arm are L1 5 127 mH; 
C1 5 0.04 mF and elements of the shunt arm are

 
2 19 8

2
0 252

2L
C

= =. .mH; Fm
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A T - section filter is 
shown is Fig. 17.62. Calculate the value 
of cut-off frequency and determine the 
iterative impedance and the phase shift 
of the network at 1.5 kHz.

Fig. 17.62

Problem 17.4

Solution we have 
L L
2

20= ⇒ =mH 40 mH

 C 5 0.12 mF

The cut-off frequency

 

f
Lc

f

c

c

= =
× × ×

=

− −

1 1

40 10 0 12 10

4 6

3 6p p

`

.

. kHz

The iterative impedance is given by

 

z L
C

f
fT
c

o = −










= −






 =

1

577 1
1 5

4 6
545 5

2

2
.

.
. V

Phase shift b =










=






 = °− −2 2

1 5

4 6
381 1sin sin

.

.

f
fc

Find the frequency at which a prototype p-section low pass 
filter having a cut-off frequency fc has an attenuation of 20 dB.

Problem 17.5

Solution we have a = 20
20

8 696
dB= nepers

= 2.23 nepers.
.

If f is the desired frequency for 20 dB, then

 

a =










=










−

−

2

2 23 2

1

1

cosh

. cosh

f

f

f

f

c

c

 
cosh .1 115( ) =

f
fc

f 5 fc cosh 1.115 5 1.689 fc
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The frequency at which low pass p section filter has an attenuation of 20 dB will 
be 1.689 times the cut-off frequency.

Design an m-derived LPF (T-section) having a cut-off frequency 
of 6 kHz and a design impedance of 500 V. The frequency of infinite attenuation 
should be 1.75 times the cut-off frequency.

Problem 17.6

Solution We have fc 5 6000 Hz; k 5 500 V, and f∝ 5 1.75 fc.

For the prototype lowpass section L k
fc

=
p

 =
⋅

=
500

6000
26 525

p
. mH

and C
kfc

= =
× ×

=
1 1

500 6000
0 106

� �
�. F

For an m-derived section the value of m
f
f
c= −









∝

1

2

 
= −

×







 =1

6000

1 75 6000
0 820

2

.
.

Now each of the series element of lowpass T-section is given by

m L
2

0 820 26 525 10

2
10 68

3

=
× ×

=
−. .

. mH

The shunt arm elements are 
mC 5 0.82 3 0.106 3 10–6 5 0.087 mF

and 

1

4

1 0 82

4 0 82
26 525 10

2 65

2 2
3−

× =
−

⋅
× ×

=

−m
m

L ( . )

.
( . )

. mH

The required m-derived network is shown in Fig. 17.63

A p-section filter network consists of a series arm inductance 
of 10 mH and two shunt arm capacitances of 0.16 mF each. Calculate the cut-off 
frequency and attenuation and phase shift at 12 kHz. What is the value of nominal 
impedance in the pass band.

Problem 17.7

Solution The given filter is shown in Fig. 17.64, it is a low pass filter; given L 5 10 mH; 
C/2 5 0.16 mF; C 5 0.32 mF.

For p-section lowpass filter

Fig. 17.63
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f

LCc =
1

p

 

=
× × ×− −

1

10 10 0 32 103 6p .

 5 5.627 kHz

Nominal terminating impedance is 
given by

k L
C

=

 
=

×

×
=

−

−

10 10

0 32 10
176 77

3

6.
. V

The attenuation constant 5 2 cosh–1 v

vc











 nepers

 

=










=
×

×











− −2 2
12 10

5 627 10
1 1

3

3
cosh cosh

.

f

fc

== 2 78. nepers

The phase shift introduced by the LPF will be p rad in the attenuation band.

Each of the two series elements of a T-type low pass filter 
consists of an inductance of 30 mH having negligible resistance and a shunt 
element having capacitance of 0.16 mF. Calculate the value of cut-off frequency 
and determine the iterative impedance and the phase shift of the network at 2 kHz.

Problem 17.8

Solution We have L/2 5 30 mH ⇒ L 5 60 mH, C 5 0.16 mF

The cut-off frequency f
LCc =

1

p

 

=
× × ×− −

1

60 10 0 16 103 6p .

 fc 5 3.24 kHz

The characteristic impedance is given by

Z L
CT

c
0

2

1= −










v

v

 
= −











L
C

f
fc

1

2

Fig. 17.64
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=

×

×
−

×

×
= =

−

−

60 10

0 16 10
1

2 10

3 248 10
612 0 619 379 05

3

6

3

3. .
( ) ( . ) . V

Since f , fc the attenuation a 5 0 and the phase shift in the pass band is given by

�
�

�
=











=






 = °− −2 2

2

3 248
761 1sin sin

.c

Design the full 
series equalizer shown in Fig. 17.65. 
The design resistance R0 5 600 V 
and attenuation of 12 dB at 800 Hz. 
Compute the elemental values.

Problem 17.9

Fig. 17.65

Solution D 5 10 log N

 12 5 10 log N

N 5 Antilog 12

10









  5 15.85

We know that N L
R

= +1
2

1
2

0
2

v

 
L

R N
1

0 1
=

−
v

 
L1

600 15 58 1

2 800
0 46=

× −
×

=
.

.
p

henry

 

L
C

R1

1
0
2=

 
C L

R1
1

0
2

0 46

600 600
1 28= =

×
=

.
. mF

Design the full 
shunt equalizer shown in Fig. 17.66 
for a design resistance R0 5 600 V 
and attenuation of 10 dB at 600 Hz. 
Calculate the elemental values.

Problem 17.10

Fig. 17.66
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Solution  D 5 10 log N

 D 5 10 dB

 N 5 Antilog 1 5 10

 

N
X

R

R

X
= + = +1 11

2

0
2

0
2

1
2

X R N1 0 1= −

 vL R N1 0 1= −

 
L

R N
f1

0 1

2

600 10 1

2 600
=

−
=

−
×p p

 L1 5 0.48 H

 
X

R
N2

0

1

600

3
=

−
=

 

1 600

31vC
=

 
C1

3

2 600 600
1 33=

× ×
=

�
�. F

Design a constant resistance lattice attenuation equalizer shown 
in Fig. 17.67. The series arm consists of R1 5 2 kV in series with L1 5 30 mH. If 
R2 5 300 V, calculate the values of R0 and capacitance C1 of the shunt arm.

Fig. 17.67

Problem 17.11

Solution R1 5 2000 V L1 5 30 mH

 R2 5 300 V

 R1R2 5 R0
2

 
R R R= =1 2 774 6. V

 

C L
R1

1

0
2 2

0 03

774 6
0 049= = =

.

( . )
. mF
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Determine the series arm of a constant resistance lattice 
attenuation equalizer shown in Fig. 17.68 having design impedance of 2 V, the 
shunt arm consists of R2 5 2 V in series with a capacitor C2 5 0.1 F.

Fig. 17.68

Problem 17.12

Solution The shunt arm values are given as follows

 R2 5 2 V

 C2 5 0.1 F

 R0 5 2 V

 
R R L

C
R1 2

1

2
0
2= =

 R1

4

2
2= = Ω

 L1 5 C2 R 0
2

 5 (0.1) (2)2 = 0.4 H

Obtain the inverse network for the network shown in Fig. 17.69.

Fig. 17.69

Problem 17.13

Solution The elements of the inverse network are given by

C
L

R
C

L

R
L C R R

R

R

C
L

R
L C R L

1
1 1

0
2 3

1 3

0
2 2

1
2 0

2
1
1 0

2

1

2
1 2

0
2 1

1
1 0

2
3
1

= = = =

= = = CC R R
R

R
R

R

R3 0
2

2
1 0

2

2
3
1 0

2

3

= =
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The inverse network is shown in Fig. 17.70.

Fig. 17.70

PSpice Problems

Determine the response of Twin T-band stop filter shown in 
Fig.  17.71(a) using PSpice.

Problem 17.1

Fig. 17.71 (a) Fig. 17.71 (b)

TWIN-T BANDSTOP FILTER
V1 1 0 AC 1 0
R1 1 2 200
C1 2 0 2 U
R2 2 3 200
C2 1 4 1 U
R3 4 0 100
C3 4 3 1 U
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F
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RLOAD 3 0 1K
.AC DEC 20 1 1000K
.PLOT AC V(3)
.PROBE
.END

Result

FREQ V(3)

(*)--------- 1.0000E – 04 1.0000E – 03 1.0000E – 02 1.0000E – 01 
1.0000E 1 00

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1.000E 1 00 7.143E – 01.  . . . *.
1.122E 1 00 7.143E – 01.  . . . *.
1.259E 1 00 7.143E – 01.  . . . *.
1.413E 1 00 7.143E – 01.  . . . *.
1.585E 1 00 7.143E – 01.  . . . *.
1.778E 1 00 7.143E – 01.  . . . *.
1.995E 1 00 7.143E – 01.  . . . *.
2.239E 1 00 7.143E – 01.  . . . *.
2.512E 1 00 7.142E – 01.  . . . *.
2.818E 1 00 7.142E – 01.  . . . *.
3.162E 1 00 7.142E – 01.  . . . *.
3.548E 1 00 7.142E – 01.  . . . *.
3.981E 1 00 7.142E – 01.  . . . *.
4.467E 1 00 7.142E – 01.  . . . *.
3.162E 1 02 3.926E – 01.  . . . * .
3.548E 1 02 3.483E – 01.  . . . * .
3.981E 1 02 3.019E – 01.  . . . * .
4.467E 1 02 2.539E – 01.  . . . * .
5.012E 1 02 2.047E – 01.  . . . * .
5.623E 1 02 1.547E – 01.  . . . * .
6.310E 1 02 1.039E – 01.  . . .* .
7.079E 1 02 5.265E – 02.  . . *. .
7.943E 1 02 8.235E – 04.  *. . . .
8.913E 1 02 5.159E – 02.  . . *. .
1.000E 1 03 1.047E – 01.  . . .* .
1.122E 1 03 1.585E – 01.  . . . * .
1.259E 1 03 2.132E – 01.  . . . * .
1.413E 1 03 2.687E – 01.  . . . * .
1.585E 1 03 3.249E – 01.  . . . * .
1.778E 1 03 3.815E – 01.  . . . * .
1.995E 1 03 4.381E – 01.  . . . * .
2.239E 1 03 4.943E – 01.  . . . * .
 - - - - - - - - - - - - - - - - - - - - - - - - 
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Using PSpice, determine 
the response of LC low pass filter shown in 
Fig. 17.73 (a).

Problem 17.2

Fig. 17.73 (a)

LC LOWPASS FILTER
V1 1 0 AC 1 0
L1 1 2 100 M
C1 2 0 1 U
L2 2 3 100 M
RLOAD 3 0 1K
.AC LIN 20 100 1.5 K
.PLOT AC V(3)
.PROBE
.END

Result

FREQ V(3)
(*)-------- 1.0000E – 04 1.0000E – 02 1.0000E 1 001.0000E 1 02 

1.0000E 1 04
  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1.000E 1 01 1.000E 1 00 . . .* . .
5.358E 1 02 3.117E 1 00 . . . * . .
1.062E 1 03 2.620E – 01 . . * . . .
1.587E 1 03 8.366E – 02 . . * . . .
2.113E 1 03 3.761E – 02 . . * . . .
2.639E 1 03 2.005E – 02 . . * . . .
3.165E 1 03 1.190E – 02 . .* . . .
3.691E 1 03 7.626E – 03 . * . . .
4.216E 1 03 5.170E – 03 . *. . . .
4.742E 1 03 3.662E – 03 . * . . . .
5.268E 1 03 2.687E – 03 . * . . . .
5.794E 1 03 2.028E – 03 . * . . . .
6.319E 1 03 1.568E – 03 . * . . . .
6.845E 1 03 1.237E – 03 . * . . . .
7.371E 1 03 9.930E – 04 . * . . . .
7.897E 1 03 8.090E – 04 . * . . . .
8.423E 1 03 6.677E – 04 . * . . . .
8.948E 1 03 5.574E – 04 . * . . . .

Fig. 17.73 (b)
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F
ig

. 
1

7
.7

4

9.474E 1 03 4.701E – 04 . * . . . .
1.000E 1 04 4.001E – 04 . * . . . .
 - - - - - - - - - - - - - - - - - - - - - - - - - - -

Practice Problems

 17.1 Design a low pass T-section filter having a cut-off frequency of 1.5 kHz to 
operate with a terminated load resistance of 600 V.

 17.2 A T-section low pass filter has series inductance 80 mH and a shunt 
capacitance of 0.022 mF. Determine the cut-off frequency and nominal 
design impedance. Obtain the equivalent p-section.

 17.3  Design a high pass filter with a cut-off frequency of 1 kHz with a terminated 
design impedance of 800 V.
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 17.4 Design an m derived high pass filter having a design impedance of 500 V and 
a cut-off frequency of 1 kHz. Take m 5 0.2.

 17.5 Design a m-derived high pass filter with a cut-off frequency of 10 kHz, 
design impedance of 600 V and m 5 0.3.

 17.6 For a p section filter network 
shown in Fig. 17.75, calculate the 
cut-off frequency and the value 
of nominal impedance in the pass 
band.

 17.7 Determine the cut-off frequency 
and design impedance for the 
T-section shown in Fig. 17.76.

 17.8 Determine the band width and cut-
off frequency for the filter shown in 
Fig. 17.77.

 17.9 Design a prototype band pass filter both T and p sections having cut-off 
frequencies of 3000 Hz and 6000 Hz and nominal characteristic impedance 
of 600 V. Also, find the resonant frequency of shunt arm or series arm.

17.10 A p-section filter network is shown 
in Fig. 17.78. Calculate the cut-off 
frequency and phase shift at 10 kHz. 
What is the value of nominal 
impedance in the pass band.

17.11 Design a prototype band stop filter 
section having cut-off frequency of 
2000 Hz and 5000 Hz and design 
resistance of 600 V.

17.12 An attenuator is composed of symmetrical p-section having series arm of 
275 V and shunt arm each of 450 V. Find

 (i) The characteristic impedance of the network
 (ii) Attenuation per section

17.13 Design full series equalizer for a design resistance R0 5 600 V and 
attenuation of 20 dB at 400 Hz. Calculate the attenuation M at 1000 MHz.

Fig. 17.75

Fig. 17.76

Fig. 17.77

Fig. 17.78
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17.14 Design the full shunt equalizer, for design resistance R0 5 600 V and 
attenuation at frequencies of 600 Hz and 1200 Hz.

17.15 Design a constant resistance lattice attenuation equalizer to produce an 
attenuation of 20 dB at 50 Hz and 3 dB at 3000 Hz. Calculate its loss at 
500 Hz. The equalizer is working between two impedances of 500 V each.

17.16 Using PSpice, find the bandwidth 
and center frequency of the band 
stop filter of Fig. 17.79.

17.17 Using PSpice, determine center 
frequency and band width of 
the band pass filter shown in 
Fig. 17.80 (a) and (b).

Fig. 17.80

17.18 A low quality factor, double tuned band pass filter is shown in Fig. 17.81. 
Use PSpice, to generate the magnitude plot of V0 (w).

Fig. 17.81

Answers to Practice Problems

 17.1 L 5 0.127 H; 

C 5 0.35 mF
 17.2 fc 5 7.587 kHz;

R0 5 1.907 KV

 17.3 0.09 mF; 0.06 H

Fig. 17.82

Fig. 17.79
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 17.4 

Fig. 17.83

 17.5  For T-section; series arm component 6.66 3 10–9 F; shunt arm 0.015 mH, 
1.3 3 10–9 F

 For p-section series arm 6.19 mH: 3.33 3 10–9 F; shunt arm 0.031 H

 17.7 1.779 kHz; 89.44 V

 17.9 f0 5 4242.7 Hz

Fig. 17.84

Fig. 17.85
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Objective-Type Questions

 17.1 A low pass filter is one which

(a) passes all low frequencies
(b) attenuates all high frequencies
(c)  passes all frequencies up to cut-off frequency, and attenuates all other 

frequencies

 17.2 A high pass filter is one which

(a) passes all high frequencies
(b) attenuates all low frequencies
(c)  attenuates all frequencies below a designated cut-off frequency, and 

passes all frequencies above cut-off

 17.3 A band pass filter is one which

(a)  attenuates frequencies between two designated cut-off frequencies and 
passes all other frequencies

(b)  passes frequencies between two designated cut-off frequencies, and 
attenuates all other frequencies

(c) passes all frequencies

 17.4 An ideal filter should have

(a) zero attenuation in the pass band
(b) infinite attenuation in the pass band
(c) zero attenuation in the attenuation band

17.11 

Fig. 17.86

17.12 (i) R0 5 217.731 V

 (ii) 9.17 dB
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 17.5 The propagation constant of a symmetrical T-section and p-section are the 
same.

(a) true (b) false

 17.6 The values of L and C for a low pass filter with cut-off frequency of 2.5 kHz 
to operate with a terminated load resistance of 450 ohms are given by

(a) 57.32 mH; 0.283 mF (b) 28.66 mH; 0.14 mF
(c) 114.64 mH; 0.566 mF

 17.7 The attenuation is sharp in the stop band for K-type filter.

(a) true (b) false

 17.8 The attenuation is not sharp in the stop band for an m-derived filter.

(a) true (b) false

 17.9 In the m-derived low pass filters, the resonant frequency is to be chosen so 
that it is

(a)  above the cut-off frequency (b)  below the cut-off frequency
(c) none of the above

17.10 In the m-derived high pass filters, the resonant frequency is to be chosen so 
that it is

(a)  above the cut-off frequency (b)  below the cut-off frequency
(c) none of the above

17.11 A band pass filter may be obtained by using a high pass filter followed by a 
low pass filter

(a) true (b) false

17.12 A band elimination filter is one

(a) which attenuates all frequencies less than lower cut-off frequency f1
(b) which attenuates all frequencies greater than upper cut-off frequency f2
(c)  frequencies lying between f1 and f2 are attenuated and all other 

frequencies are passed

Answers to Objective-Type Questions

 17.1 (c)  17.2 (c)  17.3 (b)  17.4 (a)  17.5 (a)

 17.6 (a)  17.7 (b)  17.8 (b)  17.9 (a) 17.10 (b)

17.11 (b) 17.12 (c)



CHAPTER 18

Elements of Realizability 
and Synthesis of One-port 
Networks

Hurwitz Polynomials18.1

As stated in Chapter 15, the poles of the stable 
system must lie on the left half of the s-plane. 
Any network function can be written as the 
ratio of two polynomials, and is given by
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A polynomial must satisfy the following 
conditions.

(a) Z(s) must be a real function of s
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where all the quotients ai, bj are real, and 
hence Z(s) is real if s is real.

(b) All the roots of P(s) must have zero real parts, or negative real parts.
Hurwitz polynomials have the following properties.

1. All the quotients in the polynomial

P(s) 5 a0sn 1 a1sn 2 1 1  1 an 2 1 s 1 an

  are positive. A polynomial may not have any missing terms between the 
highest and the lowest order unless all even or all odd terms are missing. For 
example, the polynomial P(s) 5 s5 1 3s3 1 5s2 1 2s 1 1 is not Hurwitz as 
the term s4 is missing. At the same time, the polynomial P(s) 5 s3 1 3s is 
Hurwitz because all quo tient terms are positive and all even terms are missing.

2. The roots of the odd and even parts of a Hurwitz polynomial P(s) lie on the 
jv axis. Consider the polynomial P(s) having odd and even parts o(s) and 
e(s), respectively; then

P(s) 5 o(s) 1 e(s)

 Both have roots on the jv axis.
3. If the polynomial P(s) is either even or odd, the roots of P(s) lie on the 

jv axis.
4. All the quotient terms are positive in the continued fraction expansion of 

the ratio of the odd to even, or even to odd parts of the polynomial P(s). 
Consider a polynomial

P(s) 5 s4 1 s3 1 6s2 1 3s 1 4
 The even parts of the polynomial, e(s) 5 s4 1 6s2 1 4
 The odd parts of the polynomial o(s) 5 s3 1 3s


