Dr. Mahalingam College of Engineering and Technology, Pollachi-3					b) Below the cutoff frequen	ncy		
(An Autonomous Institution)				c) Equal to cut off frequence	су			
CCET II (2016Regulation)				d) half of the cut off frequency				
Name of Programme: B.E - EEE				6	An LTI system is said to be linear if and only if it satisfies the			
Cour	se Code & Course Title:16EET44 - Networks and Signals				principle of		CO4	U
Sem:	V Date & Session:16.03.2018 (FN1) Duration: 1½ hours Max	. Marl	ks: 50	7	The integral of impulse fur	action gives		
Part	- A Objective Questions (10X1=1	0 Ma	rks)		a) Step function	b) Ramp function	CO4	R
1 41 0	ii objective questions (1911 1		Bloo		c) Pulse function	d) Exponential function		
Q. No	Question	CO No	ms	8	Non deterministic signals a	are also called as		
1	An ideal filter should have		Level		a) Thermal noise	b) Ramp signals	CO4	R
_	a) zero attenuation in the pass band				c) Random signals	d) Sinusoidal signals		
	b) infinite attenuation in the pass band	CO3		9	A signal is said to be energ	y signal if	CO4	U
	c) zero attenuation in the attenuation band	000	U	10	Digital impulse signal is de	fined by the sequence		
	d) infinite attenuation in the cutoff point				a) $\delta(n) = 1$, $n=0$ b) $\delta(n) = 1$, $n=0$			
2	The values of L and C for a low pass filter with cutoff				0, n< 0	0, n> 0	CO4	U
	frequency of 2.5 KHz to operate with a terminated load				$b)\delta(n) = 1, n=0$	d) $\delta(n) = 1$, $n < 0$		
	resistance of 450 ohms are given by	CO3	R		0, n# 0	0, n# 0		
	a) 57.32 mH; 0.283 μF b) 28.66 mH; 0.14 μF			Part	- B Short Answei	Questions (5X2=1	l0 Ma	rks)
	c) 114.64 mH; 0.566 µF d) 85.98 mH; 0.42 µF						co	Bloo
3	A band pass filter is obtained by using a high pass filter		_	Q. No		Question	No	ms Level
	followed by low pass filter. Say True or False	CO3	R	11	Draw the symmetrical T	$^{\prime}$ and π representation of filter	CO3	D
4	The attenuation is not sharp in the stop band for	CO3			network.		C03	R
	filters.		R	12	Design a high pass T-section filter having a cut-off frequency of 1000Hz to operate with a terminated load resistance of		000	**
5	In m derived low pass filters , the resonant frequency is to be				of 1000Hz to operate wit 600Ω .	n a terminated load resistance of	C03	U
	chosen so that it is	CO3	U	13	Differentiate pass band and	d stop band filters.	CO3	R
	a) Above cut off frequency							10

14	Distinguish between Energy and Power signals.	CO4	U				
15	List the classifications of signals.	CO4	R				
Part-	- C Descriptive – either or questions (2X15=3	30 Ma	rks)				
Q. No	Question	CO No	Bloo ms Level				
16.	(i) Derive the characteristic impedance of constant K low						
(a)	pass filter and also draw the impedance curve with	CO3	U				
	frequency. (10)						
	(ii) Design a low pass filter (T or pi network) having the cut						
	off frequency of 2 kHz with load resistance of 500Ω . (5)						
	OR						
16.	Design a m derived high pass filter with a cut off frequency	CO3	IJ				
(b)	of 10KHz, design impedance of 5Ω and m=0.4.						
17.	Check the following systems are causal or non-causal, time						
(a)	variant or invariant, linear or nonlinear, static or dynamic,						
	stable or unstable.	CO4	Ap				
	(i) $y(n) = x(2n)$ (ii) $y(n) = Ax(n) + B(7)$ (iii) $y(n) = n x(n)$						
45	OR						
17.	i) Check whether the following signals are periodic and find						
(b)	its fundamental period. (6)	CO4					
	$x(n)=\sin 2\pi n$ and $x(n)=\cos 2\pi n + \cos 8\pi n$						
	ii) Check the signal $x(n) = \sin(n\pi/3)$ is energy signal or						
	power signal. (5)						

iii) If $x(n)=\{0,2,-1,0,2,1,1,0,-1\}$ determine x(n-3) and x(-n). Also represent graphically. (4)

Note: Code for Blooms Levels:

Sl. No.	Blooms Level	Code
1	Remember	R
2	Understand	U
3	Apply	Ap
4	Analyze	An
5	Evaluate	Е
6	Create	С