
CHAPTER 18

Elements of Realizability 
and Synthesis of One-port 
Networks

Hurwitz Polynomials18.1

As stated in Chapter 15, the poles of the stable 
system must lie on the left half of the s-plane. 
Any network function can be written as the 
ratio of two polynomials, and is given by
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where all the quotients ai, bj are real, and 
hence Z(s) is real if s is real.

(b) All the roots of P(s) must have zero real parts, or negative real parts.
Hurwitz polynomials have the following properties.

1. All the quotients in the polynomial

P(s) 5 a0sn 1 a1sn 2 1 1  1 an 2 1 s 1 an

  are positive. A polynomial may not have any missing terms between the 
highest and the lowest order unless all even or all odd terms are missing. For 
example, the polynomial P(s) 5 s5 1 3s3 1 5s2 1 2s 1 1 is not Hurwitz as 
the term s4 is missing. At the same time, the polynomial P(s) 5 s3 1 3s is 
Hurwitz because all quo tient terms are positive and all even terms are missing.

2. The roots of the odd and even parts of a Hurwitz polynomial P(s) lie on the 
jv axis. Consider the polynomial P(s) having odd and even parts o(s) and 
e(s), respectively; then

P(s) 5 o(s) 1 e(s)

 Both have roots on the jv axis.
3. If the polynomial P(s) is either even or odd, the roots of P(s) lie on the 

jv axis.
4. All the quotient terms are positive in the continued fraction expansion of 

the ratio of the odd to even, or even to odd parts of the polynomial P(s). 
Consider a polynomial

P(s) 5 s4 1 s3 1 6s2 1 3s 1 4
 The even parts of the polynomial, e(s) 5 s4 1 6s2 1 4
 The odd parts of the polynomial o(s) 5 s3 1 3s
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 The continued fraction expansion is given by
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 The continued fraction expansion can be written
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 Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.
5. If the polynomial satisfies the condition of Hurwitz, then the polynomial 

must be Hurwitz to within an even multiplicative factor v(s), that is, if

P1(s) 5 v(s) P(s), then P(s) is Hurwitz

 If v(s) is Hurwitz, P1(s) must be Hurwitz.
 Consider the polynomial P1(s) 5 s3 1 3s2 1 6s 1 18
 The continued fraction expansion is obtained from the division
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  The continued fraction expansion has been terminated abruptly. So, the 
polynomial can be written as

 P s s s
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  Here (1 1 3/s) term is Hurwitz. Since the terms (s3 1 6s) is Hurwitz, then 
P1(s) also is Hurwitz.
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6. If the ratio of the polynomial P(s) and its derivative P(s) gives a continued 
fraction expansion with all positive coeffi cients, then the polynomial P(s) is 
Hurwitz.

 Consider the polynomial

P(s) 5 s4 1 3s2 1 2

 The derivative is P9(s) 5 4s3 1 6s
 By taking continued fraction expansion, we get
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Since all the quotients in the continued fraction expansion are positive, the 
polynomial P(s) is Hurwitz.

Positive real Functions18.2

As discussed in Chapter 15, the driving point impedance func tion Z(s) and driving 
point admittance function Y(s) of a one-port network can be expressed as the ratio of 
two polynomials,
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Functions possessing the following properties are called positive real functions, 
and are abbreviated as prf.

1. When s is real, Z(s) and Y(s) are real functions because the quotients of 
the polynomials P(s) and Q(s), that is, ak and bk are real. When Z(s) is 
determined from the impedances of the individual branches, the quotients ak 
and bk are obtained by adding together, multiplying or dividing the branch 
parameters which are real.
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2. The poles are zeros of Z(s) and Y(s) all lie in the left half of the s-plane, or 
on the imaginary axis of the s-plane. In the later case, the poles and zeros 
are simple.

  From the above property it should be noted that if the roots of the 
characteristic equation were lying on the imaginary axis, and the roots 
s 5 ± jv, were multiples, the solution of the charac teristic equation would 
be of the form

xt 5 (c0 1 c1t 1 c2t2 1 … 1 cm21 t m21)sin v1t

  This would cause the transients to build up, which cannot happen in a 
passive one-port. Under these conditions, all quotients an and bn of the 
polynomials P(s) and Q(s) must be positive. This can be proved by writing 
the polynomial P(s) as

 P(s) 5 a0sn 1 a1sn21 1 ··· 1 an

  5 a0(s 2 s1) (s 2 s2) ··· (s 2 sn)

  For each pair of complex and conjugate roots, sk 5 + jvk and sk+1 5 2 jvk, 
we have

(s 2 sk)(s 2 sk 1 1) 5 (s 2 jvk) (s 1 jvk)

  5 s2 1 v2
k

  For real roots of sk, all the quotients of s in s2 1 v2
k of the polynomial P(s) 

are non-negative. So by multiplying all factors in P(s), we find that all 
quotients a0, a1, , an are positive.

3. The real parts of the driving point functions Z(s) and Y(s) are positive, or 
zero, that is, Re Z(s) > 0 or Re Y(s) > 0 pro vided for all Re(s) > 0.

Let Z s
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  where P(s) and Q(s) are polynomials in s and have real coeffi cients. Hence, 
Z(s) is real, when s is real. Further, P(s) and Q(s), are real when s is real. 
Since the poles and zeros of a network function Z(s) are real, complex zeros 
must appear in conjugate pairs.

Frequency resPonse oF reactive one-Ports18.3

Based on the locations of zeros and poles, a reactive one-port can have the following 
four types of frequency response.

1. A frequency response with two external poles is shown in Fig. 18.1 (a). In 
this case the driving point impedance with poles at v 5 0 and v 5  must 
have an s in the denominator polynomial and one excess term (s2 1 v2

n) in 
the numerator than in the denomina tor.
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  The driving point impedance of the one-port is infinite, and it will not 
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pass either direct current (v 5 0) or alternating cur rent of an infinitely 
high frequency.

2. A frequency response 
with two external 
zeros is shown in 
Fig. 18.1 (b). In this 
case the driving point 
impedance with 
zeros at v 5 0 and 
v 5  must have an s 
term in the numerator 
and an excess 
(s2 1 v2

n) term in 
the denominator 
polynomial.
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  The driving point impedance of the one-port is zero, and it will pass both 
direct current and an alternating current of an infi nitely high frequency.

3. A frequency response with an external zero at v 5 0 and an external pole 
at v 5  is shown in Fig. 18.1 (c). In this case, the driving point impedance 
with zero at v 5 0 
and pole at v 5  
must have a term 
s in the numerator 
and equal number of 
(s2 1 v2

n) type terms 
in the numerator and 
the denominator.
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Fig. 18.1 (a)

Fig. 18.1 (b)

Fig. 18.1 (c)
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  In this case, the one-port will pass direct current and block an alternating 
current of an infinitely high frequency.

4. A frequency response with an external pole at v 5 0 and an external zero 
at v 5  is shown in Fig. 18.1 (d). In this case, the driving point impedance 
with pole at v 5 0 and zero at v 5  must have a term s in the denominator 
and equal number of (s2 1 v2

n) terms in the numerator and the denominator.
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  Here, the one-port will block direct current and pass an alter nating current 
of an infinitely high frequency.

The function of factor H is to fix the scale of the reactance, and hence it is referred 
to as the multiplying factor, or the scale factor. It is to be noted that as the number of 
zeros and poles in Xin (v) increases, there will be an increasing number of reactive 
one-ports having the same form of frequency response.

syntHesis oF reactive one-Ports by Foster’s metHod18.4

The driving point function of a reactive one-port Z(s) is given by
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Let us determine the circuit and parameters that implement its frequency response 
Zin(  jv) 5 jXin (v). There are two forms of Foster networks for reactive one-ports. 
One is a series combination of parallel LC circuits with capacitance C0 and inductance 
L as shown in Fig. 18.2 known as first Foster form or Impedance form.

The other form (known as second Foster form or admittance form) is a parallel 
combination of series LC circuits with inductance L0 and capacitance C as shown 
in Fig. 18.3.

To synthesize the impedance form or first Foster form, we shall write the 
expression for LC parallel combination in the network of Fig. 18.2

Fig. 18.1 (d)
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 (18.2)

To synthesise the first Foster network, the first step is to express Z(s) as the 
sum of rational fractions of the form of Eq. 18.2, to which is added the term  
1/C0s and Ls

Equation 18.1 can be written as
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If we divide the total impedance into a series combination of impedances Z1(s), 
Z2(s), , Zn(s).

Z(s) 5 Z1(s) 1 Z2(s) 1 Z3(s) 11 Zn(s) (18.4)

By comparing Eqs 18.3 and 18.4, we have impedance Z1(s) 5 P0/s that represents 
a capacitor C0 of value 1/P0, and the impedance Zn(s) 5 Hs that represents an 
inductor L of value H henrys. The remaining intermediate terms represents parallel 
combination of an inductor and a capacitor. By comparing Eq. 18.2 and the middle 
terms of Eq. 18.3, we get
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where n refers to the term 2Pn s/s2 1 v2
n in Eq. 18.3.

The presence of first element capacitor C0 and the last element inductor 
L depends on the pole-zero configuration. If there is pole at v 5 0, the first element 
C0 is present in the network. Similarly, if there is pole at v 5 , the last element L 
is present in the network.

The second canonical form, known as the second Foster network, is a parallel 
combination of series LC circuits. Because all branches in the network of Fig. 18.3 
are connected in parallel, the network can be simplified by taking the driving point 
admit tance Y(s). Therefore, we have
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To synthesise the parallel Foster network, we shall write the expression for LC series 
combination in the network of Fig. 18.3.

Fig. 18.2
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Now to synthesise the second Foster network, the first step is to express Y(s) as 
the sum of rational fractions of Eq. 18.6, to which is added the term Cs and 1/L0s.

Equation 18.5 can be written as
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If we divide the total admittance into a parallel combination of admittance Y1(s), 
Y2(s), , Yn(s)

∴ Y(s) 5 Y1(s) 1 Y2(s) 1 ··· 1 Yn(s) (18.8)

By comparing Eqs 18.7 and 18.8, we have the admittance
Y1(s) 5 P0/s which represents an inductor L0 of value 1/P0, and the admittance 

Yn(s) 5 Hs which represents a capacitor C of value H. The remaining intermediate 
terms represents series combination of an inductor and a capacitor. By comparing 
Eq. 18.6 and middle terms of Eq. 18.7, we get
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where n refers to the terms 2Pn s/(s2 1 v2
n) in Eq. 18.7.

The presence of first element inductor L0 and the last element capacitor C depends 
on the pole-zero configuration. If there is pole at v 5 0, the first element L0 is present 
in the network. Similarly, if there is pole at v 5 , the last element C is present in 
the network.

The driving point impedance of a one-port reactive network is 
given by
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Obtain the first and second Foster networks.

Example 18.1

Fig. 18.3
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Solution Since, there is an extra term in the numerator compared to the denominator, 
and also an s term in the denominator, the two poles exists at v 5 0 and at v 5 . 
Therefore, the network consists of first element and last element.

By taking the partial fraction expansion of Z(s), we have
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The element values in the first Foster form are shown in Fig. 18.4.

Fig. 18.4

To find the second Foster form, first we have to take the func tion into admittance form.
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Since, there is an s term in the numerator and an excess term in the denominator, 
the two zeros exists at v 5 0 and at v 5 . Therefore, the network consists of a 
series LC combination of parallel elements.

By taking the partial fraction expansion of Y(s), we get
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The circuit of second Foster form is 
shown in Fig. 18.5.

syntHesis oF reactive one-Ports by tHe cauer metHod18.5

In the Cauer method, there are two types of ladder networks to realise the one-port 
network. In one type of network, the series arms are inductors and the shunt arms are 
capacitors as shown in Fig. 18.6 (a).

In the other network, the series arms are capacitors and the shunt arms are 
inductors as shown in Fig. 18.6 (b).

Fig. 18.5

Fig. 18.6 (a)
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From the driving point function Z(s) or Y(s), there is always a zero or a pole 
at s 5 . We can remove this pole or zero by remaining an impedance Z1(s) or 

admittance Y1(s). Then from each remainder left, an inductor or a capacitor is 
removed, depending upon the driving point function. It may be an impedance or an 
admittance function. This process continues until the remainder is zero. From the 
above, the impedance Z(s) may be written as a continued fraction as under.
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Let us realise the first Cauer form. Consider a driving point function having a 
pole at infinity. This implies that the degree of the numerator is greater than that 
of the denominator. We always remove pole at infinity by inverting the remainder, 
and dividing. That means an LC driving point function can be synthe sised by the 
continued fraction expansion.

If Z(s) is the function to be synthesised, then the continued fraction expansion is 
as follows.
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Therefore, in the first Cauer network shown in Fig. 18.6 (a), the inductors are 
connected in series and the capacitors are connect ed in shunt.

If the driving point function, Z(s) has zero at infinite, that is, if the degree of its 
numerator is less than that of its denominator, the driving point function is inverted. 
In this case, the continued fraction will give a capacitive admittance as first element, 
and a series inductance.

Now let us realise the second Cauer network. In this case, the removal of the pole 
at zero gives the network shown in Fig. 18.6 (b), where the capacitors are connected 
in series and the inductors are connected in shunt. If Z(s) is the function to be 
synthesised, then the continued fraction expansion is

Fig. 18.6 (b)
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If the driving point function, Z(s) has a zero at zero, the continued fraction 
expansion will give an inductive admittance as first element and a series capacitance.

From the above discussion, we can conclude that in the first Cauer network, the 
first element in a series inductor when the driving point function consists of a pole at 
infinity, and it is a shunt capacitor when the driving point function consists of zero at 
infinity. Similarly, the last element is an inductor when the function consists of zero 
at v 5 0, and it is a capacitor when the function consists of pole at v 5 0.

In case of second Cauer network, the first element is a series capacitor when the 
driving point function consists of a pole at zero and it is shunt inductance when the 
function consists of a zero at zero. Similarly, the last element is an inductor when 
the driving point function consists of a pole at infinity; and it is a capacitor when 
impedance function consists of zero at infinity.

The driving point impedance of an LC network is given by
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Determine the first Cauer form of the network.

Example 18.2

Solution By taking continued fraction expansion, we get
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 Hence,

Z s s
s

s
s

s

( ) = +
+

+
+

2
1

4

1
8

3

1
3

4

1
2

3

The resulting network shown in 
Fig. 18.7 is called the first Cauer 
form.

The driving point impedance of an LC network is given by

Z(s) 5 s4 1 4s2 1 3/(s3 1 2s)

Determine the second Cauer form of the network.

Example 18.3

Solution To obtain the second Cauer form, we have to arrange the numerator and 
the denominator of given Z(s) in assending powers of s before starting the continued 
fraction expansion.

By taking continued fraction expansion, we get
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Fig. 18.7
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Hence, Z s
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The resulting network shown in 
Fig. 18.8 is called the second Cauer form.

Fig. 18.8

Fig. 18.9

syntHesis oF R-L network by tHe Foster metHod18.6

The driving point impedance function of an RL network Z(s) is given by

Z s
H s s

s s
( )

( )( )

( )( )
=

+ +
+ +

s s

s s
1 3

2 4

�
�

 (18.9)

The first form of the Foster network is shown in Fig. 18.9.

The above impedance function possess the following properties.

(i) The poles and zeros of the RL driving point impedance func tion are located 
on the negative real axis of the s-plane.

(ii) Poles and zeros alternate along the negative real axis.

(iii) The singularity at the origin, or s 5 0 is a zero.

(iv) The singularity at s 5  is a pole.
(v) The slope of the impedance curve is positive.

(vi) The impedance at s 5  is always greater than the impedance at v 5 0.

(vii) The residues at the poles of Z(s) are real and negative. The residues of Z(s)/s 
are real and positive.

To synthesise the first Foster network, we shall write the expression for the 
RL parallel combination in the network of Fig. 18.9.
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where 

Z s
R s

s

R

L

Z s

s

R

s

1
1

1

1
1

1

1 1

1

( )

( )

=
+

=

=
+

s

s

s
or

 (18.10)

We have the another form of the equation as discussed in chapter 15.

Z s
a s a s a

b s b s b

n n
n

m m
m

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�
 (18.11)

where n > m
The degree of the numerator is greater than that of the denomina tor by one. At 

s 5 0

Z s
a

b
a

a

s Z s s
a

b

n

n
n

n

( ) ( )

( )

, ( )

= ≠

= =

= =





when 

when 

And at 

0

0 0

0

0

 






≠

= =

( )

( )

when 

when 

a

a

b
a

0

1

1
0

0

0

By separating the constant term and linear term in Eq. 18.11, the RL impedance 
function can be written as

Z s P
P s

s
Hsi

i

( ) = +
+

+ +0
s

�  (18.12)

If we divide the total impedance into a series combination of impedance Z1(s), 
Z2(s),  Zn(s)

Z(s) 5 Z1(s) 1 Z2(s) 1 ··· 1 Zn(s) (18.13)

By comparing Eqs 18.12 and 18.13, we have the impedance Z1(s) 5 P0, which is 
constant. The term P0 represents a resistor R0, and the impedance Zn(s) 5 Hs represents 
L of value H henrys. The remaining terms represent parallel combination of an inductor 
and a resistor. By comparing Eq. 18.10 and middle terms of Eq. 18.12, we have

P R
R

Ln n n
n

n

= =and s

where n refers to the term Pns/(s 1 sn) in Eq. 18.12.

Consider a function Z s
s s

s s
( )

( )( )

( )( )
=

+ +
+ +

5
1 4

3 5

Z(s) represents RL impedance, because it satisfies all the prop erties, but the signs 
of Z(s) at its poles are negative as shown.
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Z s
s s

s s s s
( )

( )( )

( )( )
=

+ +
+ +

= −
+

−
+

5 1 4

3 5
5

5

3

10

5

Therefore, we have to expand 
Z s

s

( )

Z s

s

s s

s s s s s s

( ) ( )( )

( )( ) ( )
=

+ +
+ +

= +
+

+
+

5 1 4

3 5

4

3

5

3 3

2

5

If we multiply both sides by s, we get

Z s
s

s

s

s
( ) = +

+
+

+
4

3

5

3 3

2

5

Hence, the impedance Z(s) can be realised as a series Foster form of RL network 
shown in Fig. 18.10.

Fig. 18.10

Fig. 18.11

Similarly, the driving point admittance function of the RL net work, Y(s) is 
given by

Y s
b s b s b

a s a s a

m m
m

n n
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�
 (18.14)

The second form of the Foster network is shown in Fig. 18.11.

The above admittance function must possess the following proper ties.

(i) The poles and zeros of the RL driving point admittance func tion are located 
on the negative real axis of the s-plane.



898  Circuits and Networks

(ii) Poles and zeros alternate along the negative real axis.
(iii) The singularity at the origin, or s 5 0, is a pole.
(iv) The singularity at s 5  is a zero.
(v) The slope of the admittance curve is negative.

(vi) The admittance at s 5 0 is always greater than the admit tance at s 5 .
(vii) The residues at the poles of Y(s) are real and positive.

The RL admittance function can be written as

Y s
P

s

P

s
Hi

i

( ) = +
+

+ +0

s
�  (18.15)

If we observe Eq. 18.15, we have the first term P0/s representing inductance 
L0 5 1/P0, and the last term representing a resistance R 5 H. The intermediate 
terms represent admittance function of the series RL network. We, therefore, have

Y
R sLn

n n

=
+
1

 (18.16)

Comparing Eq. 18.16 with the middle terms of Eq. 18.15, we have Rn 5 sn/Pn 
and Ln 5 1/Pn 
where n refers to the nth term of Eq. 18.15, i.e. Pn /(s 1 sn),

Consider an admittance function

Y s
s s

s s
( ) =

+ +

+ +

2 16 30

6 8

2

2

The poles and zeros are positive, real and simple. The poles are at 2 2, 2 4, and 
the zeros are at 2 3, and 2 5. For the second Foster form of realisation by partial 
fraction expansion,

Y s
s

s s
A

s

B

s

A
s

s

B

s

( ) = +
+

+ +

= +
+

+
+

=
+
+( )

=

=

=−

2
4 14

6 8

2
2 4

4 14

4
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+
+

=
=−
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2
1

4

The residues are positive. Hence

Y s
s s

( ) = +
+

+
+

2
3

2

1

4

Comparing with Eq. 18.15, we have R 5 2, R1 5 2/3 V, L1 5 1/3 H and 
R2 5 4 V, L2 5 1 H.

The second Foster form of the RL admittance function with various values is 
shown in Fig. 18.12.
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syntHesis oF R-L network by cauer metHod18.7

To synthesise the RL network, the basic step to know is that the impedance function at 
infinity is always greater than the impedance function at zero. Similarly, the admittance 
function at zero is always greater than the admittance function at infinity. In case of 
RL network synthesis, we remove the minimum real part from the function Z(s). If the 
minimum real part is Re [Z(  jv)] 5 Z(0), by removing Z(0) from Z(s), the remainder 
will have a zero at s 5 0. After inverting the remaining function, we can remove the 
pole at s 5 0. By carrying on this process, we obtain a continued fraction expansion. 
The first form of continued frac tion expansion is called the first Cauer form, which is

Z s sL

R sL

R

( ) = +
+

+
+

1

1
2

2

1
1 1

1
1

�

Fig. 18.12

Fig. 18.13

The Cauer network for realising the above function is shown in Fig. 18.13.
In the network shown above, if Z(s) has a pole at s 5 , the first element is L1. If 

Z(s) is a constant at s 5 , the first element is R1. If Z(s) has a zero at s 5 0, the last 
element is Ln. If Z(s) is a constant at s 5 0, the last element is Rn.

The second form of continued fraction expansion is

Z s R

sL R

sL R

( ) = +
+

+
+

+

1

1
2

2 3

1
1 1

1
1 1

�
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The second Cauer form of the network for the above function Z(s) is shown in 
Fig. 18.14.

Here also the presence of the first and the last element depends on the characteristics 
of impedance function, Z(s). If Z(s) has a zero at s 5 0, the first element is L1. If Z(s) 
is a constant at s 5 0, the first element is R1. If Z(s) has a pole at s 5 , the last 
element is Ln. If Z(s) is a constant at s 5 , the last element is Rn.

The first form of the Cauer network can be obtained by continued fraction 
expansion and arranging the numerator and denominator polynomials of Z(s) in 
descending powers of s. The second form of the Cauer network can be obtained 
by continued fraction expansion and arranging the numerator and denominator 
polynomials of Z(s) in ascending powers of s. Consider a function

Z s
s s

s s
( )

( )( )

( )( )
=

+ +
+ +

4 8

2 6

To find out the first Cauer form, let us take the continued fraction expansion of Z(s).
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Fig. 18.14
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Therefore, the impedance function Z(s) can be realised as an RL network as shown 
in Fig. 18.15.

Fig. 18.15

Similarly, consider another function

Z s
s s

s s
( ) =

+ +

+ +
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8 12
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2

To find out the second Cauer network, we have to write the impedance function 
in ascending powers. By taking the continued fraction expansion of Z(s), we have
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Therefore, the impedance function Z(s) can be realised as an RL network shown 
in Fig. 18.16.

Fig. 18.16

syntHesis oF rc network by Foster metHod18.8

The driving point impedance RC network, Z(s) is given by

Z s
s s

s s s
( )

)( )

( )( )
=

+ +
+ +

H( s s

s s
1 3

2 4

�
�

 (18.17)

The first form of the RC Foster network is shown in Fig. 18.17.

Fig. 18.17

Here, the RC impedance possesses the same properties as the RL admittance 
function. To synthesise the first Foster form of the RC network, we shall write the 
expression for the RC parallel combination in the network of Fig. 18.17.

Z s
C

s
R C

R C
P

C

1
1

1 1

1
1 1

1
1

1

1

1 1

( ) =
+

= =s

 (18.18)

where
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We have the other form of the impedance function

Z s
a s a s a

b s b s b s

n n
n

m m
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�
 (18.19)

Obviously, the degree in s of the numerator polynomial is greater than that of 
the denominator polynomial by one. The roots of the polynomials are real and 
negative.

At when s Z s
a

b
R a= ∞ = = ≠∞, ( ) ,

0

0
0 0

 

  5 0, when a0 5 0

The total impedance can be written as the combination of impe dances Z1(s), 
Z2(s),, Zn(s)

Z(s) 5 Z1(s) 1 Z2(s) 1 ··· 1 Zn(s) (18.20)

From Fig. 18.18, we have the impedance

Z s
P

s

P

s
i

i

( ) = +
+

+ +0

s
� H  (18.21)

By comparing Eqs 18.20 and 18.21, we have the impedance Z1(s) 5 P0/s representing 
a capacitance term 1/P0, and the impedance Zn(s) 5 H, a constant term representing 
resistor R. The remaining terms represent a parallel combination of a capacitor and 
resis tor. By comparing Eq. 18.18 with the middle terms of Eq. 18.21, we have

P
C

R C

n
n

n
n n

=

=

1

1
and s

where n refers to the term Pn/(s 1 sn) in Eq. 18.21.
Similarly, the driving point function of an RC network Y(s) is given by

Y s
b s b s b s

a s a s a

m m
m

n n
n

( ) =
+ + +

+ + +

−

−
0 1

1

0 1
1

�

�
 (18.22)

The second form of the Foster network is shown in Fig. 18.18.

Fig. 18.18
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The RC admittance function possesses the same properties as the RL impedance 
function. By taking the partial fraction expansion of Eq. 18.22 we can write the RC 
admittance function as

Y s P
P s

s
si

i

( ) = +
+

+ +0
s

� H  (18.23)

If we observe Eq. 18.23, we have the first term P0 representing resistance R0 5 1/ P0, 
and the last term represents capacitance C 5 H and the intermediate terms representing 
admittance function of series RC network.

Y
R

sC

n

n
n

=
+

1
1  (18.24)

Comparing Eq. 18.24 and the middle terms of Eq. 18.23, we have

R
P

C
Rn

n
n

n n

= =
1 1
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s  

Consider a function Z s
s s
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The first Foster form can be realised by taking the partial fraction of Z(s)
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The residues are positive, and hence
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+
+

3
9 2

1

3 2

3

Comparing with Eq. 18.21, we have
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3
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2 2

, ,

,

F

and                  F

The network with elemental values is shown in Fig. 18.19.
The second Foster form can be realised by taking the reciprocal of the impedance 

function and partial fraction expansion as
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The network with elemental values is shown in Fig. 18.20.

Fig. 18.19

Fig. 18.20

syntHesis oF r-c network by cauer metHod18.9

To synthesise the RC network function, the basic step to know is that the impedance 
function at zero is always greater than the impedance function at infinity. Similarly, the 
admittance func tion at infinite is always greater than the admittance function at zero.
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To synthesise an RC network, we remove the minimum real part from the function, 
Z(s). If the minimum real part is Re [Z( j v)] 5 Z(), by removing Z() from Z(s), the 
remainder will have a zero at s 5 . After inverting the remaining function, we can 
remove a pole at s 5 . By carrying on this process, we obtain a continued fraction 
expansion. The first form of continued fraction expan sion is called the first Cauer 
form, and is given by

Z s R
C s

R
C s

( ) = +
+

+
+

1

1

2
2

1
1

1

�

The Cauer network for 
realising the above function is 
shown in Fig. 18.21.

In the network shown, if Z(s) 
has a zero at s 5 , the first 
element is C1. If Z(s) is a constant 
at s 5 , the first element is R1. If 
Z(s) has a pole at s 5 0, the last 
element is Cn. If Z(s) is constant 
at s 5 0, the last element is R n.

The second form of continued fraction expansion is

Z s
C s

R
C s

R

( ) = +
+

+
+

1 1
1 1

1 1
1

1

1

2

2

�

The second Cauer form of network for the above function Z(s) is shown in 
Fig. 18.22.

In the network shown in 
Fig. 18.22, if Z(s) has a pole at 
s 5 0, the first element is C1. If 
Z(s) is a constant at s 5 0, the first 
element is R2. If Z(s) has a zero at 
s 5 , the last ele ment is Cn. If 
Z(s) is constant at s 5 , the last 
element is Rn.

Consider a function Z(s) 5 (s 1 2) (s 1 4)/s(s 1 3). To find the first Cauer form, 
we take the continued fraction expansion by the divide, invert, divide procedure as 
follows.

Fig. 18.21

Fig. 18.22
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Therefore, the impedance function Z(s) 

can be realised as an RC network shown in 
Fig. 18.23.

Similarly, the second Cauer network can be obtained by arranging the numerator 
and denominator polynomials of Z(s) in ascending powers of s. The continued 
fraction expansion is
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Fig. 18.23
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1
100
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Therefore, the impedance function Z(s) 
can be realised as an RC network shown 
in Fig. 18.24.

Additional Solved Problems

Find the two Foster realisations of the given function.
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Problem 18.1

 Solution For the first Foster network, we expand Z(s) into partial fractions.
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The First Foster network 
with elemental values is shown 
in Fig. 18.25.

Fig. 18.24

Fig. 18.25
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Second Foster network can be obtained by taking admittance function
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By taking partial fractions, we have
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The second Foster network with elemental values is shown in Fig. 18.26.

Fig. 18.26

Find the two Foster realisations of the given function.
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Problem 18.2

Solution For the First Foster network, we expand Z(s) into partial fractions
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By inspection H 5 L 5 3
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= = = =

16

3

1 3

16
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56

2 56

272

and F0

2 2
F ;

v

The first Foster network with 
elemental values is shown in 
Fig. 18.27.

Second Foster network can be 
obtained by taking admittance 
function

Y s
s s

s s s
( )

( )

( )( )
=

+

+ +

2

2 2

9

1 16

By taking partial fraction expansion, we have

Y s
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s
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s
( ) =

+
+

+

2
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162 2

By applying Heaviside method, we get

A B= =
8

90

7
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;

Therefore, the elemental values are
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1
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2
1
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2 8
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2

90

14

2 7

720

= = = =

= = = =

A
H ;

B
H ; F

1

2

v

v

F

Fig. 18.27
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Find the second cauer network of the given function.

 
z s

s s

s s
( ) =

+ +
+

4 2

3

6 4

2

Problem 18.3

Solution The second cauer network can be realised by arranging the numerator 
and denominator polynomials of Z(s) in ascending power of s and taking continued 
fraction expansion, we get

2 4 6
2

4 2

4 2
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2
2

2
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3 2 4

2

2 4 3

3

3
2 4

s s s s
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s s s s
s

s
s

s
s s

s

+ + +
+

+ +

+

+

) (

) (

) (

ss

s
s

s
s

2

4
3

3
2

1

2

2
0

) (

Z s
s

s
s s

( )

/

= +
+

+

2 1
1

2

1
8 1

1 2

Therefore, the impedance 
function, Z(s), can be realised as the 
RC network shown in Fig. 18.29.

The second Foster network with elemental values is shown in Fig. 18.28.

Fig. 18.28

Fig. 18.29
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Find the first and second Cauer forms of the function.

 
z s

s s

s s
( ) =

+ +
+

2 8 6

2

2

2

Problem 18.4

Solution The first cauer network can be realised by taking continued fraction expansion

s s s s
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s

s
s

s
s
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2 2
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2 2 8 6 2
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+
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+
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) / (ss
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/
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12
2
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s

s

( ) = +
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+

2
1

4

1

8
1

12
Therefore, the impedance 

function Z(s) can be realised as RC 
network shown in Fig. 18.30.

The second Cauer network can 
be realised by arranging the numerator and denominator polynomials of Z(s) in 
ascending power of s and taking continued fraction expansion, we get

2 6 8 2
3

6 3

5 2 2
2

5
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5 2
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2 2
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2
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s s s s
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s s s s
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s
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s

+ + +
+

+ +

+

+

) (

) (

) (
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s
s

s

2
5

1

10

5
0

2
2

2

) (

Fig. 18.30
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Z s
s

s

( ) = +
+

+

3 1
2

5

1
25 1

10

Therefore, the impedance 
function, Z(s), can be realised as the 
RC network shown in Fig. 18.31.

Find the second Foster form and the first Cauer form of the 
network whose driving point admittance is

 
Y s

s s
s s

( )
( )( )

( )
=

+ +
+

3 2 5
3

Problem 18.5

Solution By taking partial fraction expansion, we get

Y s
s

s s
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B

s
( ) = +
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+
= + +

+
3

9 24

3
3

32

By applying Heaviside method, we get

A
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2
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Therefore, the elemental values are

R L R L= Ω = = Ω =
1

3

1

8
3 11, ;H ; H1

Therefore, the second Foster network is shown in Fig. 18.32.

Fig. 18.31

Fig. 18.32
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To get the first cauer realisation, we take continued fraction expansion from the 
expression.

Y s
s s

s s
( )

( )( )

( )
=

+ +
+

3 2 4

3

s s s s

s s

s s s
s

s s

s
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3 3 18 24 3
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)




24 27

9

24
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3
0

s

s s

s
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s
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( ) =
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+
+

1

3
1

9

1

27
1

72

Therefore, the admittance, Y(s), can be realised as RL network shown in Fig. 18.33.

Fig. 18.33

Find the two Foster realisation of
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s s

s s
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( )( )

( )
=

+ +
+

4 1 16

4

2 2

2

Problem 18.6
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Solution For the first Foster network, we expand Z(s) into par tial fractions.

Z s
P

s

P

s j

P

s j
s( )

*
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+

+
−

+0 2 2

2 2
H

By applying Heaviside method, from the above equation we have
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The first Foster network with elemental 
values is shown in Fig. 18.34 (a).

Second Foster network can be obtained by taking admittance func tion
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Let us take the partial fraction expansion, we have
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By applying Heaviside method, we get
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Therefore, the element values are
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Fig. 18.34 (a)
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L
P

C
P

L
P

C
P

1
1

1
1

1
2

2
2

2
2

1
2

1

2
20

2 2 1

40 1

1

20

1

2

10

2
5

2 2

= =

= =
×
×

=

= = =

= =

H

F

H

v

v 110 16

1

80×
= F

The second Foster network with elemental values is shown in Fig. 18.34 (b).

Find the two Cauer realisations of driving point function given by

 
Z s

s s

s s
( ) =

+ +
+

10 12 1

2 2
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3

Problem 18.7

Solution By taking the continued fraction expansion, we get
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The resulting network is called the first 
Cauer form with elemen tal values shown in 
Fig. 18.35 (a).

To realise the second Cauer network, 
we have to take ascending powers of 
impedance function.

Fig. 18.34 (b)

Fig. 18.35 (a)
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Continued fraction expansion gives
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The resulting network shown in 
Fig. 18.35 (b) is called the second Cauer 
form.

Find the first Foster form of the driving point function of
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Problem 18.8

Solution If we take the partial fraction of Z(s), the signs of the function and its poles 
are negative as shown.
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Therefore, we have to expand Z(s)/s 
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Fig. 18.35 (b)
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4 6 4 6
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If we multiply both sides by 
s, we get
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2
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Hence, impedance Z(s) can 
be realised as a series Foster 
form of RL network shown in 
Fig. 18.36.

Find the second Foster form of RL network for the function.
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Problem 18.9

Solution By taking partial fraction expansion, we get
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The second Foster form of RL admittance function with various elemental values 
is shown in Fig. 18.37.

Fig. 18.36

Fig. 18.37
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Find the first Cauer form of the function.
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Problem 18.10

Solution By taking continued fraction expansion, we get

s s s s

s s

s s s
s

s
s

s
s

2 2

2

2

2

6 8 10 21 1

6 8

4 13 6 8
4

13

4

11

4
8 4

+ + + +

+ +

+ + +

+

+

) (

) (

) ++

+

+

13
16

11

4
128

11

15

11

11

4
8

121

60

11

4

8
15

11

15

88
15
11

0

(

) (

) (

s

s
s

s

Z s
s

s

( )

/

= +
+

+
+

1
1

4

1
1

16 11

1
121

60

1
15

88
Therefore, the impedance function can be realised as RL network shown in Fig. 18.38.

Fig. 18.38
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Find the first and second Foster forms of the function.
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Problem 18.11

Solution By taking the partial fraction expansion, we get
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Hence, the impedance function Z (s) can be realised as series Foster form of RC 
network shown in Fig. 18.39 (a).

Fig. 18.39 (a)

The second Foster form can be realised by taking Y (s) as under.
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Since negative quotients appear, we have to expand Y(s)/s as follows
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Multiplying both sides by s, we get
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The network with elemental values are shown in Fig. 18.39 (b).
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Find the first and second Cauer forms of the given function.
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Problem 18.12

Solution The first Cauer network can be realised by taking con tinued fraction 
expansion.
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Therefore, the impedance function, Z(s), can be realised as RC network shown in 
Fig. 18.40 (a).

The second Cauer network can be realised by arranging the numera tor and 
denominator polynomials of Z(s) in ascending power of s and taking continued 
fraction expansion; we get

Fig. 18.39 (b)
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Therefore, the impedance function, Z(s), can be realised as the RC network shown 
in Fig. 18.40 (b).

Fig. 18.40 (a)

Fig. 18.40 (b)
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Practice Problems

 18.1 Test whether the following polynomials are Hurwitz.

(a) P(s) 5 s3 1 2s2 1 4s 1 2

(b) P(s) 5 s4 1 s3 1 4s2 1 2s 1 3

(c) P(s) 5 s4 1 2s3 1 2s2 1 6s 1 10

 18.2 Check the positive realness of the following functions.

(a)  

 

( )

( ) ( )

2 4

5

2 4

3 1

2

s

s

s s

s s

+
+
+ +

+ +
(b) 
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( ) ( )

2 4
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2

s

s

s s

s s

+
+
+ +

+ +

(c) (s2 1 2s)/(s2 1 1)

 18.3 Investigate if the following partially factored driving point impedance function 
is a minimum positive real function.

Z s
s s s s

s s s
( )

( )( )
=

+ + + +

+ + +

2 3 5 5 1

1 2 2 1

4 3 2

2 2

 18.4 Find the two canonical Foster networks with elements for the impedance 
function Z(s) given by

Z s
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s s
( )

( )( )

( )
=

+ +
+

1 3

2
 18.5 Find the first, and second Cauer networks of 

the given functions.
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 18.6 An impedance function has the pole-zero 
diagram as shown in Fig. 18.41. Find the 

impedance function to z( )− =4
3

8
 and 

realise it in Cauer form.

 18.7 Find the first Foster form and the second Cauer form of the function

Z s
s s

s s
( )

( )( )

( )( )
=

+ +
+ +

2 1 3

2 6

 18.8 Find the first and second Foster forms of the function

Z s
s s

s s s
( ) =

+ ×

+ × + ×

10 16 10

37 10 36 10

9 3 21

4 12 2 2

Fig. 18.41 Pole zero diagram
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 18.9 Synthesize first and second Foster form of LC network for the impedance

Z s
s s

s s
( )

( )( )

( )( )
=

+ +

+

2 2 2 2

2 2 2

1 3

2

18.10 Find the second Cauer form of the function

Z s
s s

s s
( ) =

+ +

+ +

2

2

4 3

8 12

18.11 Find the first Foster form and the second Cauer form after synthesising the 
impedance function given by

Z s
s s

s s
( )

( )( )

( )( )
=

+ +
+ +

2 1 3

2 6

18.12 For the given function

Z s
s s s

s s s s
( )

( )( )( )

( )( )( )
=

+ + +
+ + +

1 3 5

2 4 6

 determine the first and second Foster forms of realisation, and the Cauer, first 
and second forms of realisation.

answers to Practice Problems

 18.1 (a) Hurwitz (b) Hurwitz (c) Not Hurwitz

 18.3 The function is a minimum positive real function

 18.4 

 (a) First Foster Form

Fig. 18.42

 (b) Second Foster Form
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 18.5 

Fig. 18.43

 18.6 Z s
s s

s s
( )

( )( )

( )
=

+ +
+

1 3

2

Fig. 18.44

 (b) Second Cauer Form

 (a) First Cauer Form

 18.7.

Fig. 18.45

 I Foster Form  II Cauer Form
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18.9 

 (a) First Foster Form

Fig. 18.46

 (b) Second Foster Form

18.11 

Fig. 18.47

 (b) Second Cauer Form

 (a) First Foster Form
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Objective-Type Questions

 18.1 A polynomial must satisfy the condition that

(a) Z(s) is a real function
(b) all the roots of P(s) have zero real parts, or negative real parts
(c) both (a) and (b)
(d) none of the above

 18.2 Hurwitz polynomial possesses one of the conditions that

(a) all the quotients in the polynomial P(s) must be positive
(b) the roots of P(s) must lie on the right half of the S-plane
(c) The ratio of P(s) and P 9(s) gives negative quotients
(d) P(s) may have missing terms

 18.3 The function is said to be positive real, when

(a) the poles and zeros lie on the right half of the S-plane
(b) the poles and zeros lie on the left half of the S-plane
(c) the poles and zeros are simple and lie on the imaginary axis
(d) both (b) and (c)

 18.4 The driving point impedance with poles at v 5 0 and v 5  must have the

(a) s terms in the denominator and an excess term in the numera tor
(b) s term in the numerator and an excess term in the denominator
(c)  s term in the numerator and equal number of terms in the numerator and 

the denominator
(d)  s term in the denominator and equal number of terms in the numerator 

and the denominator

 18.5 In the first Foster form, the presence of first element ca pacitor C0 indicates

(a) pole at v 5 0 (c) zero at v 5 0
(b) pole at v 5  (d) zero at v 5 

 18.6 In the first Foster form, the presence of last element induc tor L indicates

(a) pole at v 5 0 (c) zero at v 5 0
(b) pole at v 5  (d) zero at v 5 

 18.7 Pole at infinity indicates that the

(a) degree of numerator is greater than that of denominator
(b) degree of denominator is greater than that of numerator
(c) degree of numerator is equal to the degree of denominator
(d) none of the above

 18.8 In the first Cauer LC network, the first element is a series inductor when the 
driving point function consists of

(a) pole at v 5  (c) pole at v 5 0
(b) zero at v 5  (d) zero at v 5 0
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 18.9 In the second Cauer LC network, the last element is an induc tor, when the 
driving point function consists of

(a) pole at v 5 0 (c) zero at v 5 
(b) pole at v 5  (d) zero at v 5 0

answers to objective-type questions

 18.1 (c)  18.2 (a)  18.3 (d)  18.4 (a)  18.5 (a)

 18.6 (b)  18.7 (a)  18.8 (a)  18.9 (b)



CHAPTER 19

An Introduction to PSpice

INTRODUCTION19.1

SPICE is a universal standard simulator used 
to simulate the operation of various electric 
circuits and devices. PSpice is one of the many 
commercial derivatives of SPICE. PSpice helps 
to simulate electrical circuit design before they 
are set up. This allows the designer to decide 
if changes are needed, without touching any 
hardware. PSpice also helps to check the design 
and response of the network. In short PSpice is 
a simulated lab bench on which the test circuit 
can be created and measurement can be made.

SPICE stands for Simulation Program 
with Integrated Circuit Emphasis. PSpice 
is a member of the spice family of circuit 
simulators, developed at the University of 

California, Berkeley. PSpice is a commercial product developed by Microsim 
Corporation.

WHAT IS PSPICE?19.2

In 1968, a junior faculty member at the University of California, Berkeley started a 
course on circuit simulation, hoping to develop a new circuit simulator for his work 
in circuit optimisation. He along with a few students assembled a non-linear circuit 
simulator which was to become the foundation for SPICE. The first simulator was 
named CANCER (Computer Analysis of Non-linear Circuits Excluding Radiation). But 
its capability was limited as it could not handle more components and/or circuit nodes.

During the 1970s, improvements in CANCER continued. In 1971, an 
improved version of CANCER named SPICE 1 (Simulation Program with 
Integrated Circuit Emphasis 1) was released. The next major breakthrough was 
in 1975 with the introduction of SPICE 2. From 1975 through 1983, Berkeley 
continued improving and upgrading the SPICE 2 program. In 1983, SPICE 
2G.6 version was released. All these versions were written in FORTRAN 
source code. Later it was rewritten in C. The new C version of the program was 
known as SPICE 3. SPICE 3 offers several technical advantages as compared to 
SPICE 2. Several vendor-offered versions of SPICE are there in the market. Some 
of the better-known simulators include Meta-Software’s HSPICE, Intusoft’s  
IS-SPICE, Spectrum Software’s MICRO-CAP and Microsim’s PSpice. All these were 
developed from the original SPICE 2. Although many other SPICE-based programs 
exist, these four represent the best known simulators. Majority of the SPICE-like 
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simulators are still based on SPICE 2G.6, that is a SPICE 2 version. PSpice, which 
uses the same algorithms as SPICE 2 (and confirms to its output syntax), shares this 
emphasis on micro circuit technology. However, the electrical concepts are general 
and are useful for all sizes of circuits and a wide range of applications.

GETTING STARTED WITH PSPICE19.3

SPICE is widely used in the academic and industrial worlds to simulate the operation 
of various electric circuits and devices. In order to use the educational version of 
PSpice from Microsim or elsewhere, the minimum requirement for any PC are  
PC/XT/AT with atleast 512 KB of RAM, a fixed disk, MS-DOS version 3.0 or later 
and a monochrome or colour graphic monitor with a 20 MB hard disc. PSpice was 
developed by Microsim Corporation in California and made available in 1984, and 
later by ORCAD. PSpice has been made available in different operating systems 
such as DOS; WINDOWS or UNIX, etc. Though the Windows version of PSpice 
is becoming more and more popular, a general description is presented in this 
chapter. PSpice can analyse upto roughly 125 elements and over 100 nodes. It is 
capable of performing dc analysis transient analysis and ac analysis. In addition it 
can also perform transfer function analysis, Fourier analysis and operating point 
analysis. The circuit may contain resistors, inductors, capacitors, independent and 
dependent sources, OP amps, transformers, transmission lines and semiconductor 
devices.

Make sure that the operating system and PSpice is already installed in your P.C. 
with the necessary configuration. The best way to learn a circuit simulator is to do 
simulations. Running this simulation involves the following main steps.

(i) create the input file or circuit file. It is also called a program for the simulator
(ii) run the simulator

(iii) find where the output is available
(iv) check the output. A text editor is required to create the input file, then the 

PSpice program can be run specifying the input file. If everything works, 
PSpice will read the input file executes and place the results in an output file. 
This output file may also be directed to a printer to get a print out.

Though PSpice is a powerful program that can carry out many different 
procedures, a brief introduction for the elementary types of dc, ac and transient 
analysis is presented in this chapter. The procedure described in this chapter is 
general, many advanced versions of spice packages are now available, students are 
advised to consult the user’s guide supplied by the vendor for a specific PSpice 
simulation and design.

SIMULATION STEPS19.4

As a first step in simulation, an input file must be created for the given circuit which 
is also called the circuit file. Always begin with a complete sketch of the circuit. 
Label the nodes using distinct markings. There must be always a zero (0) node, 
which will be the reference node. The other nodes can have either numerical or 
alphabetical designations.
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Title or Comment Line

The input file must be given a name (title or description of the file). Any line 
beginning with an asterisk (*) will be printed or displayed with the program, but will 
otherwise be ignored by the computer. Any line may be a title line, by starting it with 
a “*” in the first column. It is always better to include a statement for every element 
in the circuit. PSpice allows the user to insert comments or statements on any line by 
starting the comment with a “;” (semicolon). Everything on the line after the “;” is 
ignored. PSpice always expects the first line of the circuit file to be a title line. If it 
describes an element, it will be ignored. Any statement that begins with a “.” (period) 
is called a control statement. The last statement must be the .END statement which 
completes the description of the entire circuit. After the .END statement, PSpice will 
let you start another completely different circuit simulation. Upper and lowercase 
alphabetic characters may be used in PSpice; RSHUNT, Rshunt, refer to the same 
device.

COMPONENT VALUES19.5

While representing either large or small component values, the following letters with 
corresponding scale factors are to be used in PSpice.

Table 19.1 Letters used in PSpice

Symbol Meaning Value Exponential form

 F  Femto 10–15 IE-15

 P  Pico 10–12 IE-12

 N  Nano 10–9 IE-9

 U  Micro 10–6 IE-6

 M  Milli 10–3 IE-3

 K  Kilo 103 IE 3

 MEG  Mega 106 IE 6

 G  Giga 109 IE 9

 T  Tera 1012 IE 12

The symbolic form may be written either using upper or lower case letters. For 
example M or m indicates milli or 10–3; mega or 106 is written by MEG or meg. All 
the quantities, or values, in PSpice may be expressed as decimal or floating point 
values as used by all computer programs. The symbols in Table 19.1, when used 
as suffixes multiply the number they follow by a power of ten as an example 25N 
indicates the value of 25 3 1029 5 0.025E-6.

DC ANALYSIS AND CONTROL STATEMENTS19.6

In dc circuit for spice, only seven circuit elements are used. These are the resistors—
two independent sources and four dependent sources. Let us consider the voltage 
divider circuit shown in Fig. 19.1 (a) to investigate using PSpice.
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Figure 19.1 (a) shows a series circuit with 
a dc voltage source and 3 resistors R1, R2 
and R3. To specify the device or element in 
the circuit file we have to include the name 
of the element; the location of the element 
i.e. the nodes between which the element is 
connected and its value. PSpice uses the basic 
electrical units for voltage (volts); current 
(amps) and also uses, ohms, Farads and 
Henrys. We can specify the elements merely 
by using appropriate letter as the first letter 
of the device name as R for resistor, L for 

inductor C for capacitor, V for independent voltage source and I for independent 
current source. Now let us write the input file or circuit file for the circuit shown in 
Fig. 19.1 (a).

*voltage divider circuit

VIN 1 0 100 V

R1 1 2 1 K

R2 2 3 5 K

R3 3 0 4 K
.OP
.END

An editor such as the MS-DOS editor note pad or MS word from MS Office is to 
be used to enter the circuit file. The file might be suitably named. After running the 
PSpice program, the result would appear in the output file as follows
Simulation result of Fig. 19.1 (a).

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 100.0 (2) 90.000 (3) 40.000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
 VIN –1.00E 2 02
TOTAL POWER DISSIPATION 1.00 E 1 00 W
Total job time 1.05.

Let us examine the statements in the input file. There is a statement for each 
element of the circuit. Each line of the input file is a statement. The first line in 
the program indicates the title of the file. Four lines are used to describe four 
elements in the circuit. The second line describes the independent voltage source. 
It is identified by using the first letter of the source (It can be followed by any 
combination of seven additional letters or numbers). The name (VIN) is followed 
by a blank, the node (1) to which the positive reference to the source is connected, 
another blank, and then the node (0) at which the negative terminal is located. 
Another blank precedes the numerical value of the voltage in volts. 3rd, 4th and 
5th lines describes the three resistances in the circuit. A resistor is identified by 
its first letter (It can be followed by another seven additional letters or integers), 

Fig. 19.1 (a)
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the name R1 is followed by one or more blanks, followed by the first node (1), 
followed by one or more blanks and then the second node (2) and one more blank 
precedes the value (1 kV) of R1. The last two lines in the input file are called 
control statements. After incorporating all the circuit data in the program, it is 
necessary to specify the operations that are to be performed. This is done by 
control statements.

.OP Statement

The .OP Statement is a control statement which instructs the computer to calculate 
the dc voltage between each node and the reference node.

.END Statement

The .END statement is the another most important control statement which must 
be used as the last line in every input file program. The .END statement marks the 
end of the circuit. All the data and commands must come before it. When the .END 
statement is reached, PSpice does all the specified analysis on the circuit.

There may be more than one circuits in an input file. Each circuit and its commands 
are marked by a .END statement. PSpice processes all the analysis for each circuit 
before going on to the next one. Everything is reset at the beginning of each circuit. 
Having several circuits in one file gives the same results as having them in separate 
files and running each one separately. Having finished with the file, exit the editor 
and run the PSpice program. If there are no errors the output analysis of the circuit 
will be available in the output file.

The control statement .OP gives maximum amount of information. It produces 
detailed bias point information, that is the voltage of all nodes, the currents and 
power dissipation of all the voltage sources. If the number of nodes are more, the 
computer generates a lot of output data that we may not really need.

.PRINT Statement

Instead of the .OP statement, we can use another control statement the .PRINT, for 
specific outputs. The print control statement consists of .PRINT followed by a space 
and DC, another space, and the desired node voltage or node voltages separated by at 
least one space. For example the following statement indicates the voltage at node 2 
and node 3 with reference to zero node.

PRINT DC V(2) V(3)
In addition, the voltage between two nodes current values may be specified by 

.PRINT statement as .PRINT DC V(1, 3) I(R1). The above statement indicates in the 
output file, the voltage between nodes 1 and 3, and the current through resistor R1. 
One important point is that the .PRINT command does not result in printing of any 
value on paper. It is merely made available in the output file in computer memory. If 
the printer is connected to the system, then the appropriate command will produce 
a printed output. The currents through the branches can be measured in PSpice. If 
an independent voltage source exists in that branch. Thus, if, we want to calculate 
the value of current in some branch of a circuit that does not contain an independent 
voltage source, then we have to insert a voltage source with a value of 0 volts in the 
branch. Let us consider Fig. 19.1 (b). It is required to write the input file to calculate 
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the current through 3 V resistor with the indicated direction where no voltage source 
exists. The four nodes and the reference node have been numbered, the current 
through 3 V is desired, we shall therefore insert (V

3
) a 0 volt voltage source in the 

branch as shown in Fig. 19.1 (c). In SPICE a voltage source current is positive if it 
were directed from plus to minus through V. Hence, the assumed polarities for V

3
 

are correct.

Fig. 19.1 (b)
Fig. 19.1 (c)

The data for the circuit file is given by

*current measurement

VIN 1 0 10 V

R
1

1 2 10

R
2

2 3 5

R
3

2 4 3

R
4

3 0 6

V
3

4 0

.PRINT DC I (R3)

.END
The result of this program is as follows

Simulation result of Fig. 19.1 (c)
NODE VOLTAGE N V N V N V
(1) 10.0000 (2) 1.9075 (3) 1.040 (4) 0.0000
VOLTAGE SOURCE CURRENTS
VIN – 8.092 E 2 01
V3 6.358 E 2 01

Total power dissipation 8.09E + 00 WATTS

As mentioned earlier .PRINT statement can be used for several outputs in one 
table, and mix voltages and currents. The output values you can print are basically 
node voltages and device (also source) currents. Node voltages can be printed relative 
to ground (0 node) or relative to another node. Examine the following statements for 
the circuit shown in Fig. 19.1 (c).

.PRINT DC V(1) to print voltage at node 1 (i.e. source 
voltage 10 V)

.PRINT DC V(1,2) to print voltage between node 1 & 2.
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.PRINT DC V(R4) to print voltage across R4

.PRINT DC V(2) V(3) I(R1) to print voltage at node 2, 
node 3 and current through R1.

Current Source

If a current source is present in the circuit, the 
first node listed in the SPICE statement is the 
one at the tail of the current arrow and the rest 
of the listing is similar to the voltage source 
representation. As an example consider the circuit 
in Fig. 19.1 (d).

Now the statement for the independent current 
source in the input file is I I N 0 1 100 M.

DEPENDENT SOURCES19.7

In the seven circuit elements/devices mentioned in dc analysis we have discussed 
only three; they are resistor, independent current and voltage sources. The other four 
elements are dependent sources. They are (VCVS) voltage-controlled voltage sources, 
(CCCS) current-controlled current source, (VCCS) voltage-controlled current source 
and (CCVS) current-controlled voltage source. These sources are described in the 
input file in a way that is similar to the passive devices. The names of VCVS; and 

VCCS are identified in the 
circuit file with a name 
beginning with letters 
E and G respectively 
followed by the connecting 
nodes, control nodes and 
gain factor in the order 
mentioned, of course 
with blanks in between. 
The following examples 
illustrate the description of 
the dependent sources in 

the file. Let us consider the current in Fig. 19.2 (a) where we have one
The VCVS in the circuit of Fig. 19.2 (a) is written in the input file as
E 2 3 1 0 0.5

where, E–Device name

 2–Positive node of the device
 3–Negative node of the device
 1–Controlled voltage positive node
 0–Controlled voltage negative node
 0.5–Gain factor of the voltage

Similarly, VCCS in the circuit of Fig. 19.2 (a) is written in the input file as
 G 0 3 1 0 10
 G–Device name

Fig. 19.2 (a)

Fig. 19.1 (d)
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 0–node at the tail of the arrow in current source
 3–node at the head of the arrow in current source
 1–Controlled voltage positive node
 0–Controlled voltage 2nd node
 10–Gain factor.
Let us consider the current in Fig. 19.2 (b) where we have a CCCS and a 

CCVS.
The statement for current controlled sources has a name beginning with F and H 

for CCCS and CCVS respectively, followed by the two nodes defining the direction 
of the current flow through the dependent source and the name of the V-device that 

Fig. 19.2 (c)

Fig. 19.2 (b)

has the controlling current, as PSpice measures the currents through voltage sources 
only. In the circuit shown the controlling current I

2
 is in the branch R

2
 which does 

not have an independent voltage source, that is, no V-type element. Hence, a slight 
modification is required in the above circuit. Insert a zero volt independent voltage 
source in the branch R

2
 and name this as VO, and change the above circuit to the 

circuit shown in Fig. 19.2 (c).
Now the CCVS in the circuit of Fig. 19.2 (c) is written in the circuit file as
H 4 3 VO 100

where, H–Device name

 4–Positive node of the device

 2–2nd node (negative node) of the device
 VO–The name of the zero volt source in the control branch
 100–gain factor of the controlling current.
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Similarly, CCCS of Fig. 19.2 (c) in the circuit file is listed as
 F 4 0 VIN –0.1
where, F–Device name
 4–Node at the tail of the arrow of the CCCS
 0–Node at the head of the arrow of the CCCS
  VIN–Name of the independent voltage source through which the 

controlling current is carried.
 – 0.1–Gain factor of the controlling current. The reason for using minus 

sign is that the controlling current I is directed from minus to plus through VIN in the 
circuit.

Write a SPICE program for the circuit shown in Fig. 19.2 (a) to 
determine the voltages at node 2 and 3, if VIN 5 10  volts dc.

Example 19.1

Solution *voltage dependent sources

VIN 1 0 10

R1 1 0 1K

R2 1 2 2K

R3 3 0 3K

E 2 3 1 0 0.5

G 0 3 1 0 10
 .OP
 .END

Simulation result of Example 19.1

NODE VOLTAGE N V N V
(1) 10 (2) 12.01EW 1 03 (3) 12.00E 1 03
VOLTAGE SOURCE CURRENTS
VIN 5.989E 1 00
POWER DISSIPATION 2 5.99E 1 01W; Time 2.43.

Write a spice program for the circuit shown in Fig. 19.2 (c) 
to determine the voltages of all nodes, and the power dissipation of all sources. 
Assume VIN 5 100 volts; R1 5 R2 5 2 kV; R3 5 R4 5 0.5 kV.

Example 19.2

Solution * Current dependent source
 VIN 1 0 100
 R1 1 2 2K
 R2 2 20 2K
 R3 2 3 0.5K
 R4 4 0 0.5K
 VO 20 0
 H 4 3 VO 100
 F 4 0 VIN 20.1
 .OP
 .END
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Simulation result of Example 19.2

NODE VOLTAGE N V N V N V N V
(1) 100 (2) 18.4810 (3) 4.2208 (4) 5.1948 (20) 0.000
Voltage source currents

NAME CURRENT
VIN 24.026E 2 0.2
VO 9.740E 2 03
Total power dissipation 4.03 W.
Current controlled sources
NAME F
I SOURCE 2.013E 2 02
Current controlled voltage sources
NAME
V-SOURCE 9.740E 2 01
I-SOURCE 23.052E 2 02
Total job time 2.32.

DC SWEEP19.8

In the calculations so far the values for sources maintained fixed values. But 
when the PSpice analysis is used with a range of input voltages which is called 
dc sweep, where the sources vary, though the analysis will still calculate 
quiescent operation. Using this analysis allows to look at the results from many 
.OP analysis in a single simulation run. That is, when you sweep a source the 
simulator starts with one value for a source (voltage or current), calculate the DC 
bias point as it does for the .OP statement, then increments the value and does 
another dc bias point calculation and so on until the last source value has been 
analysed.

.DC Statement

The dc sweep analysis is controlled with a .DC statement. The .DC statement gives a 
range to voltages/currents. This is called a sweep of voltage/current. This statement 
specifies the values used during the dc sweep. The statement says which source value 
is to be swept, the starting value, the end value and the amount of increment in each 
step. Let us insert the .DC statement in the circuit file of Fig. 19.1 (a) and rewrite the 
file.

*voltage divider circuit

VIN 1 0 100V

R1 1 2 1K

R2 2 3 5K

R3 3 0 4K

.OP

.DC  VIN 0 100 10

.END



An Introduction to PSpice 939

While adding a .DC statement to the circuit file, the other lines used to describe 
the circuit need not be changed. Adding .DC statement will override the fixed value 
indicated by the independent source VIN during DC sweep analysis. After running 
the PSpice program, the output file contains the following simulation result.

Small signal bias solution

N V N V N V
(1) 100 (2) 90 (3) 40

VOLTAGE SOURCE CURRENTS
NAME CURRENT
VIN 21.00E 2 02
Total power dissipation 1.00 1 0.0 watt
Time 1.66.

The .DC statement followed by name of the source VIN whose voltage is to be 
swept, the next two values 0 and 100, are for the start and stop voltage values of the 
sweep, and the last value 10 is the increment.

.PROBE Statement

In PSpice, we have a facility called PROBE which provides us the powerful graphic 
capability of PSpice. To use the above statement we must instruct PSPICE to create 
a data file for probe which is done by including the .PROBE statement in the input 
file. This statement is similar to the .PRINT with the .PROBE you may select node 
voltages and device currents to be output from the simulation. The .PROBE statement 
writes the results from DC, AC and transient analysis to a data file named PROBE.
DAT for graphics analysis by post-processor. The general forms of the .PROBE 
statement are

.PROBE

.PROBE V (1) V (4 3) I (R4)

The first form without any output variable writes all the node voltages and all the 
device currents to the data file. The second form writes the following output variables 
to the data file. The voltage of node 1, voltage between node 4 and 3 and the current 
through R

4
. Another important difference between .PRINT and .PROBE statement is 

that the analysis name (DC, AC or transient) is absent before the output variable in 
.PROBE statement.

AC ANALYSIS AND CONTROL STATEMENTS19.9

Another important application of the PSpice simulator is to verify the frequency 
response of various devices and circuits. The response calculates all the ac node 
voltages and branch currents over a specified range of frequencies. PSpice calculates 
the dc node voltage without any special requirements, but in ac analysis, we must 
specifically ask for it.

Let us consider the circuit shown in Fig. 19.3 (a) which is a series RLC circuit with a 
voltage source of 100 V at an angle of 15°. Each independent voltage and current source 
in ac analysis is characterised by its amplitude and phase with the source statement in 



940  Circuits and Networks

the file. The source frequency is specified in a control statement. (.AC statement). Let 
us write a suitable input file for the circuit shown in Fig. 19.3 (a).

Fig. 19.3 (a)

*RLC SERIES CIRCUIT

VIN 1 0 AC 100 15

R 1 2 1K

L 2 3 2mH

C 3 0 5mF

.AC LIN 1 50 50

.PRINT AC IM (R) IR(R) II(R) IP(R)

.END

The statement VIN 1 0 AC 100 15 indicates the ac source which is connected 
between nodes 1 and zero with an amplitude of 100 V and a phase angle of 15º. If the 
phase angle is 0º, the last term in the statement can be omitted.

Simulation result

FREQ IM(R) IR(R) II(R) IP(R)
5.00E 1 0.1 8.438 3 10–2 5.705 3 10–2 6.217 3 10–2 4.746 3 101

Time 2.28.

.AC Statement

This statement begins with the specification .AC and continues with four 
additional terms. The first term indicates the type of frequency sweep (linear, 
octave and decade). The second term indictes the number of points in the sweep 
and the 3rd and 4th terms indicate the beginning and ending frequencies. Hence, 
.AC LIN 1 50 50 statement gives a linear sweep for one frequency only with 
beginning and ending value of 50 Hz that is it selects only one frequency. If it is 
required to seep 10 frequencies linearly from 5 Hz to 50 Hz then the ac statement 
would be

(.AC LIN 10 5 50)

This statement would provide results at the starting and stopping frequencies and 
eight intermediate frequencies that are uniformly spaced (5, 10, 15, 20, 25, 30, 35, 
40, 45, 50).
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.PRINT AC Statement

Output from ac analysis may be generated by .PRINT statement, just as in DC 
analysis. The phase AC replaces DC. The output values that can be printed are node 
voltages and device currents (source currents) with some special considerations 
for AC analysis. The voltages and currents may be specified as magnitude, 
phase, real part, imaginary part or magnitude in dB by adding M, P, R, I and DB 
respectively as a suffix to “V” (Voltage magnitude) or “I” (Current magnitude). 
Thus the statement.

(.PRINT AC IM(R) IR(R) II(R) IP(R))

would yield the magnitude, the real component, the imaginary component and 
the phase angle in degree of the current through R. This is shown in the input 
file and its simulation result of Fig. 19.3 (a). As mentioned earlier, the frequency 
sweep can be done in octave and decade also. Their syntax is similar, only thing 
required is, .AC DEC is used for decade sweep and .AC OCT is used for octave 
sweep.

TRANSIENT ANALYSIS19.10

PSpice can be effectively used for transient or time domain analysis. It is used 
very often for circuit simulation, because this analysis is the tedious and difficult 
analysis as it involves lengthy integro-differential equations with boundary 
conditions.

In PSpice we can investigate the circuit transient response for various types of 
input waveforms, like exponential (EXP), pulse (PULSE); piecewise-linear (PWL); 
frequency modulated wave (SFFM) and for sinusoidal wave (SIN) forms. Hence, 
the independent voltage and current sources may be specified in any of the above  
time-varying waveforms by giving a proper format. The following are the General 
formats of the statements used to describe the applied voltages (waveforms) in 
transient analysis.

PWL (T1, V1 T2, V2 … TNVN) describes a piecewise linear waveform. 
The arguments in parenthesis represent time voltage pairs at the corners of the 
waveform.

EXP (V1 V2 TD1 TR1 TD2 TR2) describes the exponential waveform initial voltage 
V1 upto a delay time of TD1 seconds. V2 is the peak voltage with a fall delay time of 
TD2, TR1 and TR2 are the rise time constant and fall time constants respectively.

PULSE (V1 V2 TD TR TF PW PER) describes the pulse form of voltage with 
initial voltage (V1); peak value of pulse (V2); delay time (TD); rise time (TR); fall 
time (TF); width of the pulse (PW); and period of the pulse (PER).

SFFM (VO VA FC MD FS) describes the single frequencies modulated wave, 
with offset voltage VO peak amplitude (VA); carrier frequency (FC); modulation 
index (MD) and single frequency (FS).

SIN (VO VA FREQ TD DF PHASE) describes the sinusoidal waveform with an 
offset voltage of VO, peak value of VA, frequency FREQ, delay time td, damping 
factor DF and a phase angle. The SIN waveform format is only for transient analysis 
only.
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.TRAN Statement

.TRAN statement specifies the time interval over which the transient analysis 
takes place. This statement is followed by two values. The first value indicates 
the print-step (interval) value and the second value indicates the final value 
of time (length of the time for the analysis). Observe the following .TRAN 
statement.

.TRAN 2 ms 20 ms

wherein the time interval (time step) is 2 ms and the maximum value of time limit is 
20 ms. Apart from the time step and final time some more options like starting time 
(default value is zero), max time for analysis and initial conditions can also be used along 
with .TRAN statement. Output from transient analysis may be generated by .PRINT 

statement just as in dc and ac 
analysis. Hence, transient 
analysis requires a .PRINT 
command similar to dc 
or ac analysis except that 
the term dc/ac is replaced 
by TRAN. The statement 
form is .PRINT TRAN 
(Any of the eight output 
variables).

As an example of transient 
analysis, let us calculate the 
voltage at node 2 in the circuit 
shown in Fig. 19.4 (a).

Let us apply piecewise linear

*RL TRANSIENT

 VIN 1 0 PWL (0, 0 10 ms, 1 V 10 ms, 10 V)
 R1 1 2 150
 R2 2 0 1K
 L 2 0 5M IC 5 0
 TRAN 1 ms 10 ms
 .PRINT TRAN V(2)
 .END

IC 5 0 in the above file indicates zero initial current in the inductor. After running 
the PSpice analysis we obtain the following simulation result.

Simulation result

N V N V
(1) 0.40 (2) 0.40
Voltage source currents
 V 0.000E 1 00
 Total power dissipation 0.00E 1 00W
 Transient analysis Temperature 27 DEG C

Fig. 19.4 (a)
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Time V(2)
0.000E 1 00 0.000E 1 00
1.000E 2 03 3.002E 2 02
2.000E 2 03 3.003E 2 02
3.000E 2 03 3.003E 2 02
4.000E 2 03 3.003E 2 02
5.000E 2 03 3.003E 2 02
6.000E 2 03 3.003E 2 02
7.000E 2 03 3.003E 2 02
8.000E 2 03 3.003E 2 02
9.000E 2 03 3.003E 2 02
1.000E 2 03 3.003E 2 02
Total job time 0.08 sec.

.PROBE Statement

Using probe with transient analysis is identical to what we have done with dc and 
ac analysis. Include a .PROBE statement to the circuit file. Try the above example 

with .PROBE statement, and verify on the 
graph the voltage variation.

Consider another example with non-zero 
initial current as shown in Fig. 19.4 (b). The 
switch is closed at t 5 0.

The switch is opened before t 5 0, the 
initial current before the closure of the 
switch is i(o) 5 10/25 5 0.4 A (through 
inductor). After the switch is closed, the 
current rises exponentially. The following 
is the input file for the transient analysis 
of the circuit in Fig. 19.4 (b).

*Transient analysis with I.C.

VIN 1 0 PWL (0,    4 V 1 ms, 10 V 1 ms, 10 V)
R 2 3 10              

L 3 0 0.5M IC 5 0.5A
.TRAN 10 ms 1 ms
.PROBE
.END

Notice that, the 1st time voltage pair in PWL parenthesis is written as 0, 4. This 
is because when the switch is closed at t (o1)  the voltage 4 V will appear across 
R.(0.5 3 10 5 4 V). Run the PSpice program and verify the result.

Sometimes, capacitors have initial voltages, if a 0.5 mF capacitor connected 
between nodes 3 and 4, carrying an initial voltage of 50 V may be specified in input 
with the following description.

C 3 4 0.5 mF IC 5 50

We can also use sinusoidal excitation in transient analysis to verify the frequency 
response of the circuit. If the input source is a simple sinusoidal voltage source 

Fig. 19.4 (b)
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without any off-set values and time delays with a maximum value of 215 V and 
frequency of 50 Hz. It can be represented in input file as

VIN 0 1 Sin (0 215 50 Hz).

Additional Solved Problems

For the 
circuit shown in Fig. 19.5 write 
the input file, run the PSpice 
program and obtain the current 
through R1 ; R5,voltage at node 2 
and voltage between node 2 
and 3.

Problem 19.1

Fig. 19.5

Solution *TWO VOLTAGE SOURCES

 V1 1 0 10
 R1 1 2 1K
 R2 2 3 2K
 R3 2 0 1K
 R4 3 0 2K
 R5 3 4 3K
 V2 4 0 5
 .OP
 .DC VI 50 50 5
 .PRINT DC 1(R1) 1(R5) V(2) V(2,3)
 .ENDs

(.DC is a sweep statement it allows to sweep through a set of voltage of source 
V1. Though we are not interested in sweep in this problem, it is required for the next 
(.PRINT) statement. Without .DC statement .PRINT is not valid).

The order in which the elements in the input file are listed makes no difference in 
the PSpice analysis.

Simulation result

 DC transfer curves

 VI I(R1) I(R5) V(2) V(2,3)
 5.0 3 109 2.811 3 10–2 1.486 3 10–3 2.189 3 109 1.243 3 109

 Small signal bias solution i
 N V N V N V N V
 (1) 10 (2) 4.5946 (3) 2.9730 (4) 5.000

 Voltage source currents
 V1 – 5.405 3 10–3

 V2 – 6.757 3 10–4
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Total power dissipation 5.74 3 10–2 watts
Total job time 2.24.

For the circuit shown in 
Fig. 19.6 write the input file to obtain voltage 
across RL and current through R1 when the 
input voltage varies from 0 to 100 V.

Problem 19.2

Fig. 19.6

Solution *DC SWEEP

 VIN 1 0 100
 R1 1 2 50
 R2 2 0 100
 R3 2 3 25
 RL 3 0 75
 .OP
 .DC VIN 0 100 10
 .PRINT DC V(RL) I(RI)
 .END

The variation of the source voltage from 0 to 100 is set with 10 V increment.
After running the PSpice programme the output file consists a table; showing the 

relation between VIN V(RL) and I(RI).

Following is the simulation result.
DC Transfer curves

VIN V(RL) I(RI)
0 0 0
10 3.750 1 3 10–1

20 7.5 2 3 10–1

30 1.125 3 101 3 3 10–1

40 1.5 3 101 4 3 10–1

50 1.875 3 101 5 3 10–1

60 2.25 3 101 6 3 10–1

70 2.625 3 101 7 3 10–1

80 3 3 101 8 3 10–1

90 3.375 3 101 9 3 10–1

100 3.75 3 101 1.00
Small signal bias solution

N V N V N V
(1) 100 (2) 50 (3) 37.5
VOLTAGE SOURCE CURRENTS
VIN –1.00
Total power dissipation 1 3 102  W
Time 1.47.
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Obtain SPICE 
solution for the voltages at all 
nodes for the circuit shown in 
Fig. 19.7.

Assume VIN 5 100 V; R1 5 1 K; 
R2 5 500  V; R3 5 100 V; R4 5 2 K; 
I1 5 20 mA and I2 5 25  mA.

Problem 19.3

Fig. 19.7

Solution *CURRENT SOURCES

 VIN 1 0 100
 R1 1 2 1K
 R2 2 0 500
 R3 2 3 100
 R4 3 0 2K
 I1 0 2 20M
 I2 0 3 25M
 .OP
 .END

Run the PSpice analysis and the output of the result is as follows.
Small signal bias solution
N V N V N V
(1) 100 (2) 4.37 (3) 41.7810
Voltage source currents
VIN –5.863 3 10–2

Total power dissipation 5.86 W
Total time 1.31.

For the circuit shown in 
Fig. 19.8 (a). Find the current, I and voltage 
at node 3.

Problem 19.4

Fig. 19.8 (a)

Solution Since the branch in which the 
current is to be found, does not have an 
independent voltage source, assume 5 0-volt 
voltage source with proper polarities as shown 
in Fig. 19.8 (b).

*CURRENT DEPENDENT SOURCE
 VIN 1 0 50
 R1 1 2 2K
 R2 2 20 1.5KFig. 19.8 (b)
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 R3 3 0 2K
 VO 20 0
 H 2 3 VO 0.5
 .OP
 .END

Simulation result

Small signal bias solution

N V N V N V N V
(1) 50 (2) 15 (3) 14.997 20 0.0

Voltage source currents
VI 21.75 3 10–2

VO 1 3 10–2

Total power dissipation 8.75 3 10–1

Current-controlled voltage sources
Name H

V-SOURCE 5 3 10–3

I-SOURCE 7.498 3 10–3

Time 5.12.

Find the magnitude of the 
current, its real, imaginary components and its 
phase with respect to source in the series R-L 
circuit shown in Fig. 19.9.

Problem 19.5

Fig. 19.9

Solution *AC RL series circuit
 V

IN
 1 0 AC 10 30

 R 1 2 100
 L 2 0 2.5 M
 .AC LIN 1 50 50
 .PRINT AC IM(R) IR(R) II(R) IP(R)
 .END

Simulation result

Small signal bias solution

In dc bias calculations, all node voltages; source currents and powers are zero.
AC Analysis

FREQ IM(R) IR(R) II(R) IP(R)

5.00E 1 01 1.000E 2 01 8.699E 2 02 4.932E 2 02 2.955E 1 01

Total job time 0.96.
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For the given series RLC 
circuit shown in Fig. 19.10 find the resonant 
condition and plot the graphs using PSpice 
program.

Assume R 5 25 V; L 5 10 mH and C 5 100 mF; 
V 5 100 V.

Problem 19.6

Fig. 19.10

Solution The resonance frequencies fr =
× × ×

=

− −

1

2 10 10 100 10

159

3 6

Hz

It is observed that the resonance frequency is 159 Hz. Hence, to plot a wide range of 
frequencies in ac sweep, the .AC statement calls for a linear sweep. Let us fix the starting 
frequency as 5 Hz and stop frequency as 1000 Hz in 100 steps. Now the input file is given by

*RLC series resonance
 VIN 1 0 AC 100
 R 1 2 25
 L 2 3 10M
 C 3 0 100u
 .AC LIN  100 5 1000
 .PROBE
 .PRINT   AC I(R)
 .END

Run the PSpice analysis and see the PROBE screen display. There are many 
variables that can be displayed. These are all menu driven and can be easily learned 
on screen. You can simultaneously display many quantities on the same graph by 
incorporating .PROBE statement.

In the AC analysis you will find a linear sweep of 100 frequencies starting from 
5 Hz to 1000 Hz. The maximum current 3.999 A is observed at 1.558 3 102 Hz.

Total job time is 1.31.

For the coupled 
circuit shown in Fig. 19.11, the 
coefficient of coupling is 0.5. 
Use SPICE programme to find 
currents in L1, L2. Take R1 5 R2 5 10 V; 
L1 5 L2 5 20 mH; C 5 5 mF and 
RL 5 50 V.

Problem 19.7

Fig. 19.11

Solution Coupled coils may also be specified in spice input file. The coefficient of 
coupling is always greater than zero and maximum value is one. If two coils with self 
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inductances of L
1
 and L

2
 are mutually coupled with a mutual inductance of M, then 

the coefficient of coupling is given by K
M

L L
=

1 2*Coupled coils
 VIN 1 0 AC 230
 R1 1 2 10
 R2 3 4 10
 L1 2 0 20M
 L2 3 0 20M
 RL 5 0 50
 C 4 5 5u
 K L1 L2 0.5
 .AC LIN 1 50Hz 50Hz
 .PRINT AC I(R1) I(R2)
 .END

Simulation output
Small signal DC biasing values will be zero.
AC analysis
FREQ I(R1) I(R2)
5.000E 1 01 1.946E 1 01 9.655E 2 02
Time 1.66.

For the circuit 
shown in Fig. 19.12 determine the 
voltage at node 1 and node 2, when 
the switch is closed at time t 5 0. 
Use piecewise linear function. Use 
R1 5 R2 5 50 V and L 5 10 mH.

Problem 19.8

Fig. 19.12

Solution As already mentioned in transient analysis, the .TRAN statement should 
specify time interval (TSTEP) and length of time. Generally, PSpice employs a 
variable time interval which is larger when the output is relatively constant, and 
smaller when the output changes more rapidly. Generally for a circuit having a time 
constant of t, we can use TSTEP as 0.1 t and a maximum time of 10 t or use the step 
time as one tenth of the length of the time for analysis.

� �= =
×

=
−L

Req

10 10

100
100

3

sec

Therefore let us use TSTEP as 10 m sec and max time as 100 m sec. Now the input 
file for the transient analysis is given by

*RL TRANSIENT

 I 0 1 PWL (0,0 10 µs, 2 M 100 µs, 2 M)
 R1 1 0 50
 R2 1 2 50
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 L 2 0 10 M
 .TRAN  10 µs 100 µs
 .PRINT  TRAN v(1) v(2)
 .END

TRANSIENT ANALYSIS
TIME V(1) V(2)
 0 0 0
  1 3 10–5 9.758 3 10–2 9.516 3 10–2

  2 3 10–5 9.306 3 10–2 8.611 3 10–2

  3 3 10–5 8.896 3 10–2 7.792 3 10–2

  4 3 10–5 8.525 3 10–2 6.379 3 10–2

  5 3 10–5 8.19 3 1–2 5.772 3 10–2

  6 3 10–5 7.886 3 10–2 5.772 3 10–2

  7 3 10–5 7.611 3 10–2 5.223 3 10–2

  8 3 10–5 7.363 3 10–2 4.726 3 10–2

  9 3 10–5 7.138 3 10–2 4.276 3 10–2

 10 3 10–5 6.935 3 10–2 3.869 3 10–2

Time 2.53 sec.

For the source 
free circuit shown in Fig. 19.13 (a) 
the initial current in the inductor is 
50 mA and the switch is closed at time 
t 5 0. Obtain the growth of the current 
through L. Assume R 5 50; L 5 5 H.

Problem 19.9

Fig. 19.13 (a)

Solution To find I in L where the source 
is absent, we assume a zero volt voltage 
source with proper polarities as shown in 
Fig. 19.13 (b).

*SOURCE FREE RL CIRCUIT
VO O 10
L 10 1 5 IC 5 50M
R 1 0 50
F 0 1 VO 0.5
.TRAN IM 300M UIC
.PRINT TRAN I(L)
.END

UIC indicates the use initial condition. The transient analysis results are given  upto 
10 milli seconds. The current through inductor will be zero at ≈ 275 m sec. By incorporating 
.PROBE statement the variation of I(L) can be observed in the graphic display.

Fig. 19.13 (b)


