(An Autonomous Institution affiliated to Anna University)

16EET44 Networks and Signals

Tutorial Book

Name	:
Roll No	:
Department & Section	:

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

RUBRICS TO BE FOLLOWED FOR TUTORIAL

	Level of Performance				
Criteria	Excellent Good		Satisfactory	Needs Improvement	
	5 Points	4 Points	3 Points	2 Points	
Computation & Execution	All aspects of the students solution were completely accurate	The students computations were essentially accurate	The student made minor computational error	The student made errors in computation serious enough to flaw the solution	
Completion & Neatness	All problems are completed, the work is presented in a clear and organized manner	80% problems are completed. the work is presented in a clear manner to understand	70% problems are completed. the work is presented clearly	Only 50% problems are completed, the work is presented in a clear but difficult to read.	

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Unit IV

Index

Tutorial No	Date	Tutorial Topic	Marks	Sign
(CO4: Classify	the type of signals & system and Perform operation	on on signals	
19		Classification of Signals		
20		Classification of Signals		
21		System Classification		
22		System Classification		
23		Correlation and Linear Convolution		
24		Circular Convolution and De-convolution		
		Average		

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Useful Finite Summation Identities ($a \neq 1$)

$$\sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1 - a}$$

$$\sum_{k=0}^{n} ka^{k} = \frac{a}{(1 - a)^{2}} [1 - (n+1)a^{n} + na^{n+1}]$$

$$\sum_{k=0}^{n} k^{2}a^{k} = \frac{a}{(1 - a)^{3}} [(1 + a) - (n+1)^{2}a^{n} + (2n^{2} + 2n - 1)a^{n+1} - n^{2}a^{n+2}]$$

$$\begin{split} \sum_{k=0}^n k &= \frac{n(n+1)}{2} \\ \sum_{k=0}^n k^2 &= \frac{n(n+1)(2n+1)}{6} \\ \sum_{k=0}^n k^3 &= \frac{n^2(n+1)^2}{4} \\ \sum_{k=0}^n k^4 &= \frac{n}{30}(n+1)(2n+1)(3n^2+3n-1) \end{split}$$

Useful Infinite Summation Identities (|a| < 1)

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$$

$$\sum_{k=0}^{\infty} ka^k = \frac{a}{(1-a)^2}$$

$$\sum_{k=0}^{\infty} k^2 a^k = \frac{a^2 + a}{(1-a)^3}$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:19 - Signal Classification - Periodic/Aperiodic

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

1. Compute and sketch the signals $x_1(n-3)$, $x_1(n)x_1(n-3)$, $x_1(n)x_1(n+2)$, if $x_1(n)=\{1,5,7,11,13,15\}$.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

- 2. Check the following signals are periodic or not and if periodic find the fundamental period.
- i) $Sin(0.02\pi n)$
- ii) Cos(4n)
- iii) $Sin(2\pi n/3) + cos(2\pi n/3)$
- iv) $Cos(n/6) Cos(n\pi/6)$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:20 - Signal Classification - Even/Odd, Energy/Power

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

1. Find even and odd components for the given signal. $X1(n)=\{2,1,3,-2,4\}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

- 2. Check the following signal is energy or power signal.
 - i) $x(n) = (1/3)^n u(n)$
 - ii) $x(n) = Sin(\pi n/4)$
 - iii) $x(n) = e^{2n}u(n)$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Tutorial No:21 - System Classification - static or dynamic, causal or non-causal, linear or non-linear

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

1. Check whether the following systems are static or dynamic.

a.
$$y(n)=x(n-3)$$
 b. $y(n) = x(n+1)$

c.
$$y(n) = x^2(n)$$

$$d. y(n)=ax(n)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

- 2. Check whether the following systems are causal or non-causal.
- a. y(n)=x(n)+x(n-1)

b.
$$y(n) = x(n) + x(n+1)$$

c.y(n)=x(2n) $d.y(n)=x(n^2)$

$$d.y(n)=x(n^2)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Check whether the following systems are linear or non-linear.

a.
$$y(n) = nx(n)$$
 b. $y(n) = 10x(n)+12$

c.
$$y(n)=[x(n)]^2$$
 d. $y(n)=n^2x(n)$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Tutorial No: 22 - System Classification - time variant or time invariant, stable or unstable, recursive or non-recursive

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

a. y(n) = x(-n)

b. y(n) =

1. Check whether the following systems are time variant or time invariant.

c.
$$y(n) = x^2(n)$$

d.
$$y(n)=x(n^2)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Check whether the following systems are stable or unstable system.

a.
$$y(n) = ax^{2}(n)$$

b.
$$y(n) = ax(n-1)+bx(n+1)$$

c.
$$y(n) = 2^n u(n-4)$$

d.
$$y(n) = e^{n/4} u(n-4)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Check whether the following systems are recursive or non-recursive system.

a.
$$y(n) = y(n-1)+y(n-2)+x(n)+x(n-1)$$

b.
$$y(n) = x(n) + x(n-1)$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:23 – Operation on signals – Correlation and Linear convolution

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

1. Find the correlation of the two signals. $x(n) = \{4, -3, -2, 1\}$ $y(n) = \{1, 1, 0, 1\}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

2. Find $\gamma_{XX}(n), \gamma_{YY}(n), \gamma_{XY}(n), \gamma_{YX}(n)$ for the following sequence.

 $x(n)=\{-2,3,-2,4,2,3\}$ $y(n)=\{-2,3,1,2,3,4\}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

3. Obtain linear convolution for the following signal by graphical method

$$x(n)=\{1,2,3,4\}$$
 and $h(n)=\{1,4,2,1\}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Tutorial No:24 – Operation on signals – Circular convolution and Deconvolution

CO4: Classify the type of signals & systems and perform operation on signals (Understand)

1. Obtain Circular convolution forthe following signal.

$$x(n)=\{1,-1,-2,3,-1\}$$
 $h(n)=\{1,2,3\}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

2. Using Circular convolution find y(n) for the given $x(n)=\{1,2,3\}$ & $h(n)=\{1,1,1,1\}$ and compare the result withLinear convolution.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

3. Find the input x(n) that will generate an output sequence $y(n) = \{1,5,10,11,8,4,1\}$ for a system with impulse response $h(n) = \{1,2,1\}$

Date:

$Dr.\ Mahalingam\ College\ of\ Engineering\ and\ Technology,\ Pollachi-642003$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Unit V

Index

Tutorial No	Date	Tutorial Topic	Marks	Sign
	<u> </u>	CO5: Analyze Discrete Time Signal		<u> </u>
25		DTFS		
26		DTFS		
27		DTFT		
28		DTFT		
29		Solution of Difference Equation		
	Average			

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Discrete Time Fourier Series (DTFS)

The periodic sequence can be represented by DTFS as,

$$x(n) = \sum_{k = \langle N \rangle} X(k) e^{jk\Omega_0 n} \qquad \text{(Synthesis equation)}$$

$$X(k) = \frac{1}{N} \sum_{n = \langle N \rangle} x(n) e^{-jk\Omega_0 n} \qquad \text{(Analysis equation)}$$

Here

'N' is the period of x(n).

$$\Omega_0 = \frac{2\pi}{N}$$
 is the frequency in radians.

 $\sum_{k=< N>}$ means summation over the range of 'N' for difference values of k.

Properties of DTFS:

Sr. No.	Name of the property	Property	
1	Linearity	$a \times (n) + b \times (n) \xleftarrow{DTFS} a \times (k) + b \times (k)$	
2	Time shift	$x(n-n_0) \leftarrow \xrightarrow{DTFS} e^{-jk\Omega_0 n_0} X(k)$	
3	Frequency shift	$e^{jk_0 \Omega_0 n} x(n) \stackrel{DTFS}{\longleftrightarrow} X(k-k_0)$	
4	Scaling	$x(an) \stackrel{DTFS}{\longleftrightarrow} a X(k)$	
5	Convolution	$x(n) * y(n) \stackrel{DTFS}{\longleftrightarrow} NX(k)Y(k)$	
6	Modulation	$x(n) y(n) \stackrel{DTFS}{\longleftrightarrow} X(k) \cdot Y(k)$	
7	Symmetry	If $x(n)$ is real, then $X^*(k) = X(-k)$ If $x(n)$ is imaginary, then $X^*(k) = -X(-k)$ If $x(n)$ is real and even, then $Im\{X(k)\} = 0$ If $x(n)$ is real and odd, then $Re\{X(k)\} = 0$	
8	Parsevals relation	$\frac{1}{N} \sum_{n = < N >} x(n) ^2 = \sum_{k = < N >} X(k) ^2$	

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:25

CO5: Analyze Discrete Time Signal

1. Determine the DTFS coefficients to evaluate DTFS representation of following x(n)

$$x(n) = \cos\left[\frac{6\pi}{13}n + \frac{\pi}{6}\right]$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Find the DTFS coefficients of the following figure shown:

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:26

CO5: Analyze Discrete Time Signal

1. Determine DTFS representation of the signal $x(n) = \cos\left(\frac{n\pi}{3}\right)$. Plot the spectrum of x(n).

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals Date:

Tutorial No:27

CO5: Analyze Discrete Time Signal

1. Determine the DTFT of the sequence

$$x(n)=\alpha^n u(n), |\alpha| \le 1$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Find the DTFT of the two sided sequence $x(n)=x(n)=\left(\frac{1}{4}\right)^{|n|}$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Tutorial No:28

CO5: Analyze Discrete Time Signal

1. If the frequency response is $H(e^{jw}) = \frac{1 - \frac{1}{4}e^{-jw}}{1 + \frac{1}{42}e^{-jw}}$, Find the unit sample response

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Solve y(n) - 0.25y(n-1) = x(n) - x(n-2) for $x(n) = \delta(n)$, assuming zero initial conditions.

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

Tutorial No:29

CO5: Analyze Discrete Time Signal

1. If
$$x(n)=2\delta(n+2)-\delta(n+1)+3\delta(n)-\delta(n-1)-\delta(n-2)$$
 Evaluate

$$_{a)}\ X(e^{jw})|_{w=0}$$

$$_{b)}\ X(e^{jw})|_{w=\pi}$$

(An Autonomous Institution affiliated to Anna University)

Course Code & Title: 16EET44 – Networks and Signals

Date:

2. Find the frequency response of a LSI system whose input and output satisfy the difference equation y(n) - 0.5y(n-1) = x(n) + 2x(n-1) + x(n-2)