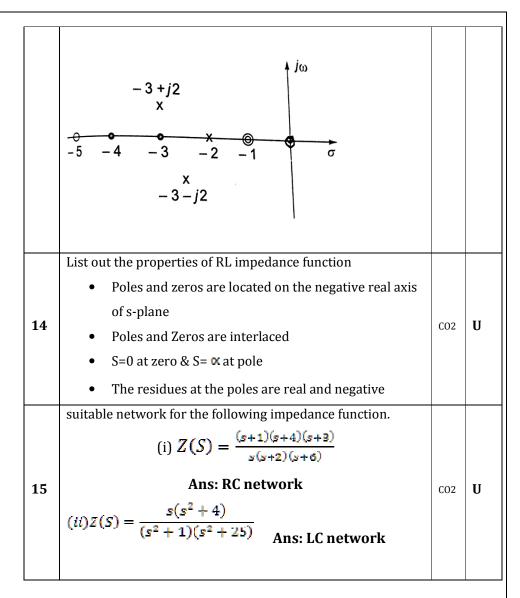
Dr. Mahalingam College of Engineering and Technology, Pollachi-3

(An Autonomous Institution)

CCET I (2016_Regulation) 16EET44 Networks and Signals

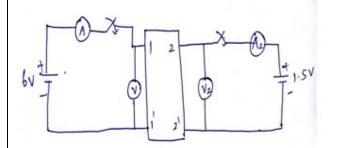

Answer Key

Sem:IV Date& Session: **31.01.18(FN1)** Duration: 1½ hours Max. Marks: 50

Part	- A Objective Questions (10X1=1	0 Mai	rks)
Q. No	Question	CO No	Bloo ms Level
1	The impedance matrices of two, two port networks are given by $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ and $\begin{bmatrix} 15 & 5 \\ 5 & 25 \end{bmatrix}$. If the two networks are connected in series. What is the impedance matrix of the combination. a) $\begin{bmatrix} 3 & 5 \\ 2 & 25 \end{bmatrix}$ b) $\begin{bmatrix} 18 & 7 \\ 7 & 28 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 8 \\ 2 & 35 \end{bmatrix}$ d) $\begin{bmatrix} 15 & 2 \\ 5 & 3 \end{bmatrix}$	CO1	U
2	The ABCD parameters of an ideal n:1 transformer is $\begin{bmatrix} n & 0 \\ 0 & x \end{bmatrix}$. The value of x will be a)x=n b)x=0 c)x=1 d)x=1/n	CO1	AP
3	Which parameters are widely used in transmission line theory a)Z parameters b) Y parameters c)ABCD parameters d)h parameters	CO1	U
4	For a two-port network to be reciprocal. a) $Z_{11}=Z_{22}$ b) $h_{21}=-h_{12}$ c) $Y2_1=Y_{22}$ d)AD-BC=0	CO1	U

5	For a lattice network the value of the series impedance is 3Ω		
	and that of the diagonal impedance is 5 Ω , then Z parameters		
	of the network are given by		
	a) $Z_{11}=Z_{22}=2 \Omega$, $Z_{12}=Z_{21}=1/2 \Omega$,	CO1	U
	b) $Z_{11}=Z_{22}=4 \Omega$, $Z_{12}=Z_{21}=1 \Omega$,		
	c) $Z_{11}=Z_{22}=8 \Omega$, $Z_{12}=Z_{21}=2 \Omega$,		
	d) $Z_{11}=Z_{22}=5 \Omega$, $Z_{12}=Z_{21}=2\Omega$,		
6	The expression of A in transmission parameter in terms of Z parameter $A=Z_{11}/Z_{21}$	CO1	U
7	In the first Foster form the presence of last element inductor L^{α} indicates (a) pole at $\omega = 0$ (b) pole at $\omega = \infty$ (c) zero at $\omega = \infty$ (d) zero at $\omega = 0$	CO1	U
8	· · ·		
8	An LC impedance or admittance function (a) has simple poles and zeros in the left half of the splane. (b) has no zero or pole at the origin or infinity. (c) is an odd rational function. (d) has all poles on the negative real axis of the s-plane	CO2	U
9	Poles and Zeros are called critical frequencies. True	CO2	U
10	Pole at infinity indicates that the		
	a)degree of numerator is greater than that of		
	denominator	CO2	U
	b) degree of denominator is greater than that of numerator		
	c) degree of denominator is equal to degree of numerator		
_			_

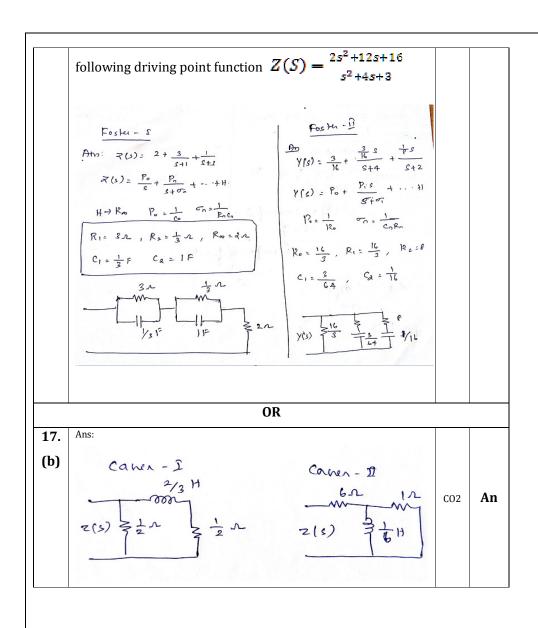
Q. No	Question	CO No	Bloo ms Leve
11	(i) Driving point impedance The ratio of transform voltage at one port to the transform current at the same port. $Z_{11}(s)=V_1(s)/I_1(S)$ (ii) Transfer impedance The ratio of transform voltage at one port to the transform current at the other port. $G_{21}(s)=V_2(s)/I_1(S)$	CO1	U
12	For the ladder two-port network shown find the open circuit driving point impedance at port 1-2 Ans: $Z11 = \frac{s^4 + 2s^3 + 3s^2 + 3s + 2}{s^3 + s^2 + s + 1}$	CO1	U
13	Draw the pole zero plot for a given network function. $Z(S) = \frac{3s(s+1)^2(s+5)}{(s+1)(s+3+j2)(s+3-j2)}$	C01	U



Part- C Descriptive – either or questions (2X15=30 Marks)

Q. No	Question	CO No	Bloo ms Level
16. (a)	Find the transmission or general circuit parameters of the given network $ \xrightarrow{\mathbf{T}} $ $ \xrightarrow{\mathbf{T}} $ $ \xrightarrow{\mathbf{T}} $		
	$a + \sqrt{\frac{y}{1}}$ $A + \sqrt{\frac{y}$		
	$A = \frac{V_1}{V_2}$ $J_3 = 0$ J_4 $V_1 = 4J_1$ $J_3 = 0$ $J_4 = 0$ $V_1 = 3 \cdot 4J_1$ $J_4 = -J_1 \times J_2 = -0.6J_1$	CO1	
	$V_{A} = 2x \text{ Ct} \xrightarrow{\text{decrees}} 2x$ $T_{2A} = \frac{T_1 \times L}{12} = \frac{J_1}{2}$ $V_{A} = d \times \frac{T_1}{2} V_{A} = T_1$ $A = \frac{4T_1}{T_1} A = 4$ $C = \frac{T_1}{V_A} T_{A} = \frac{T_1}{T_1}$ $D = 1.6L$		

- (i) S_{1-} open S_{2-} -closed $A_{1}=0A$ $V_{1}=4.5V$ $V_{2}=1.5V$ $A_{2}=1A$
- (b) (ii) S_1 --open S_2 --open A_1 =4A V_1 =6V V_2 =6V A_2 =0A


 $V_{1} = Z_{11} I_{1} + Z_{12} I_{2}$ $V_{2} = Z_{21} I_{1} + Z_{22} I_{2}$ $V_{3} = A_{11} I_{1} + A_{12} I_{2}$ $V_{4} = Z_{21} I_{1} + Z_{22} I_{2}$ $V_{5} = A_{11} I_{1} + A_{12} I_{2}$ $V_{7} = A_{11} I_{1} + A_{12} I_{2}$ $V_{8} = A_{11} I_{1} + A_{12} I_{2}$ $V_{1} = A_{11} I_{1} + A_{12} I_{2}$ $A_{11} = \frac{V_{1}}{I_{1}} I_{2} = 0$ $A_{11} = \frac{V_{1}}{I_{1}} I_{3} = 0$ $A_{12} = \frac{A_{12}}{I_{1}} I_{3} = 0$ $A_{12} = \frac{A_{12}}{I_{1}} I_{3} = 0$ $A_{13} = \frac{A_{13}}{I_{13}} I_{3} = 0$ $A_{14} = \frac{A_{15}}{I_{13}} I_{3} = 0$ $A_{15} = A_{15} I_{15} I_{15} = 0.67$ $A_{15} = A_{15} I_{15} I_{15} = 0.67$ $A_{15} = A_{15} I_{15} I_{15} = 0.67$ CO1

 $222 = \frac{V_2}{I_2} \Big|_{I_1 = 0} = \frac{1.5}{I} = 1.5 \Omega$ $2 = \begin{cases} 1.5 & 4.5 \\ 1.5 & 1.5 \end{cases}$ 1.5 & 0.67

Ap

An

17. CO2 Analyse in Foster I and Foster II forms of realization of (a)

