$\label{lem:constraints} \textbf{Dr.\,Mahalingam\,College\,of\,Engineering\,and\,Technology,\,Pollachi-3}$

(An Autonomous Institution)

CCET II (2016Regulation)

Name of Programme: B.E - EEE

Course Code & Course Title: 16EET44 - Networks and Signals

Sem:IV Date & Session:16.03.2018 (FN1) Duration: 1½ hours Max. Marks: 50

Part	Part- A Objective Questions (10X1=1		0 Marks)	
Q. No	Question	CO No	Bloo ms Level	
1	a) zero attenuation in the pass band	CO3	U	
2	a) 57.32 mH; 0.283 μF	CO3	R	
3	False	соз	R	
4	K-type filters	CO3	R	
5	a) Above cut off frequency	CO3	U	
6	Superposition	CO4	U	
7	a) Step function	CO4	R	
8	c) Random signals	CO4	R	
9	E= Finite and P=0	CO4	U	
10	b) $\delta(n) = 1$, n=0 0, n# 0	CO4	U	
Part	art- B Short Answer Questions (5X2=10) Marks)	
Q. No	Question	CO No	Bloo ms Level	
11	Draw the symmetrical T and $\boldsymbol{\pi}$ representation of filter network.	CO3	R	

Design a high pass T-section filter having a cut-off frequency of 1000Hz to operate with a terminated load resistance of 600Ω.

$$L = \frac{K}{4\pi f_c} = \frac{600}{4 \times \pi \times 1000} = 47.74 \text{ mH}$$

$$C = \frac{1}{4\pi k f_c} = \frac{1}{4\pi \times 600 \times 1000} = 0.133 \,\mu\text{F}$$

co3 []

13 Differentiate pass band and stop band filters.

S.No	Band Pass Filter	Band Stop Filter		
1	A band pass filter is one	BSF is one which		
	which attenuates all	passes without		
	frequencies below a	attenuation all		
	lower cut-off frequency	frequencies less		
	f1 and above an upper	than the lower cut-off	CO3	F
	cut-off	frequency f1, and	03	Г
	frequency f2	greater than the upper		
		cut-off frequency f2.		
2	A band pass filter may	a band stop filter can		
	be obtained by using a	be realized by		
	low	connecting a low pass		
	pass filter followed by a	filter in parallel		

O No		Question		со	Bloo
Part-	- C	Descriptive - either or o	questions (2X15=3	30 Ma	rks)
	5.	Causal and Non-causal Sign	als		
	4.	Deterministic and Random	Signals		
	3.	Energy and Power Signal		CO4	R
	2.	Periodic and Non-Periodic	Signals	604	D
	1.	Even and Odd Signals			
15		classifications of signals.			
		te the power over all time, i	=-		
		energy signal is one that ha			
	each	point should	be finite.		
	_	n time. So if a signal is a pow	•		
	-	wer signal is a signal that	has finite nower for each		
		signals is infinite.	and the energy of a	CO4	U
	_	are periodic. r of an energy signal is zero	and the energy of a		
	-	periodic signals are energy s	ignais while power		
		ver infinite time.	i ann a la contribi a un accomo		
	_	gy signals are time limited w	hile power signals can		
14	_	uish between Energy and Po	_		
		filter			
		off frequency of the HP	that of a high pass filter		
		LP filter is above the cut-	low pass filter is below		
	3	cut-off frequency of the	Cut-off frequency of		
		high pass filter	with a highpass section		

Question

(i) Derive the characteristic impedance of constant K low

pass filter and also draw the impedance curve with

ms Level

U

(10)

Q. No

frequency.

a la sulla Tara Sa cord to ha
A A network either T or IT is said to be
of the constant - K type if 7, & 72 of the
network eatisfy the condition
$a_1 a_2 = K^2$ — ①
where 7, & 22 are Impedances on the T and
It sections.
* A prototype T and IT sections are shown in
the tigue where 7, = jwc and 72 = jwc.
71/2 71/2
42 42
72 TC 272 C/2 + 272
(a) (b)
* 7,7,= K2
=) SINL X 1 = K2 =) K2 = =
: K: I which is Independent of theguency
classification of pass & stop band,
the cut of frequencies are
The cut the pregnetices the
1 = 0
41

Calculation of characteristic impedance: The characteristic impedance can be

au,
$$Z_{OT} = \int Z_1 Z_2 \left(1 + \frac{Z_1}{4Z_2}\right)$$

$$= \int J_1 W_1 \times \frac{1}{J_1 W_2} \left(1 + \frac{W^2 L_2}{4}\right)$$

$$= \int \frac{L}{C} \left(1 - \frac{W^2 L_2}{4}\right)$$

$$Z_{OT} = K \int 1 - \left(\frac{1}{J_2}\right)^2$$

(ii) Design a low pass filter (T or pi network) having the cut off frequency of 2 kHz with load resistance of 500Ω .

Design of L and C (3M)

For low pass filter, $L = \frac{K}{\pi f_e} = 79.6 \text{mH}$ $C = \frac{1}{\pi k f_e} = 0.318 \mu F$

Diagram: (2M)

OR

- Design a m derived high pass filter with a cut off frequency
- of 10KHz, design impedance of 5Ω and m=0.4.
 - i) Design of L and C (4 Marks)

For high pass filter, $L = \frac{K}{4\pi f_c} = 0.398 \mu H$

$$C = \frac{4\pi f_c}{4\pi k f_c} = 1.59 \mu F$$

ii) Elements of modified high pass filter: (7 M)

T section Elements are, $2C/m = 7.95 \mu F$, $L/m = 0.9955 \mu H_{1} (4m/1-m^{2})C = 0.302 \mu F$ π section Elements are, 2L/m =1.99 μH, $C/m = 3.95 \mu F_{s} (4m/1-m^{2}) L = 0.0758 \mu H$

iii)

