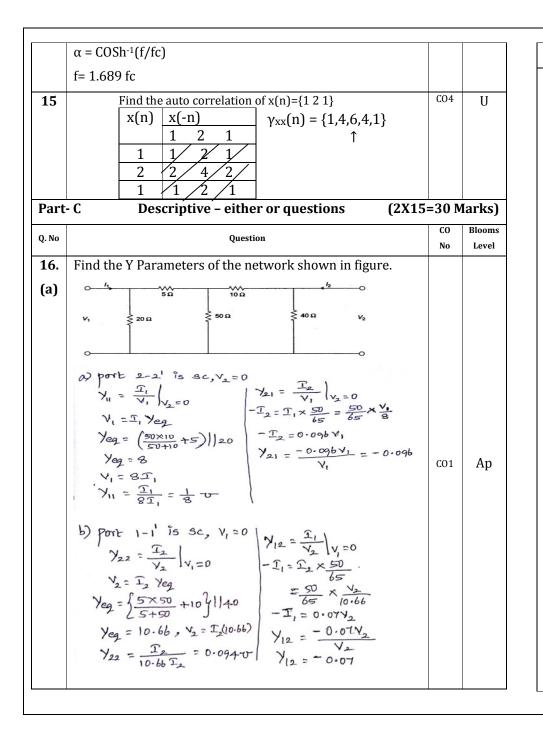
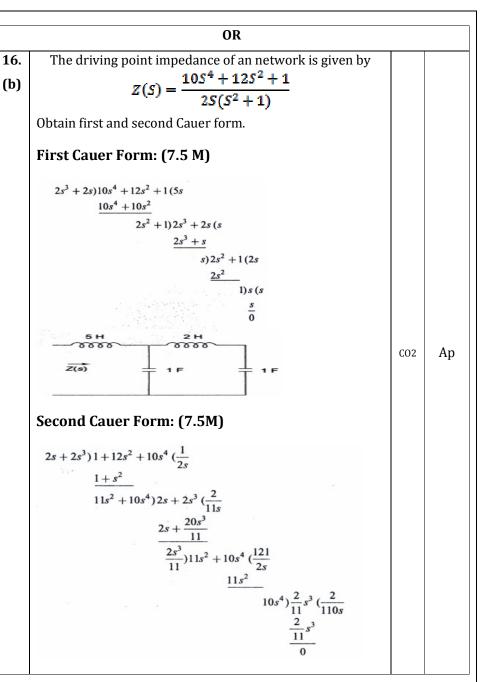
Dr. Mahalingam College of Engineering and Technology, Pollachi-3

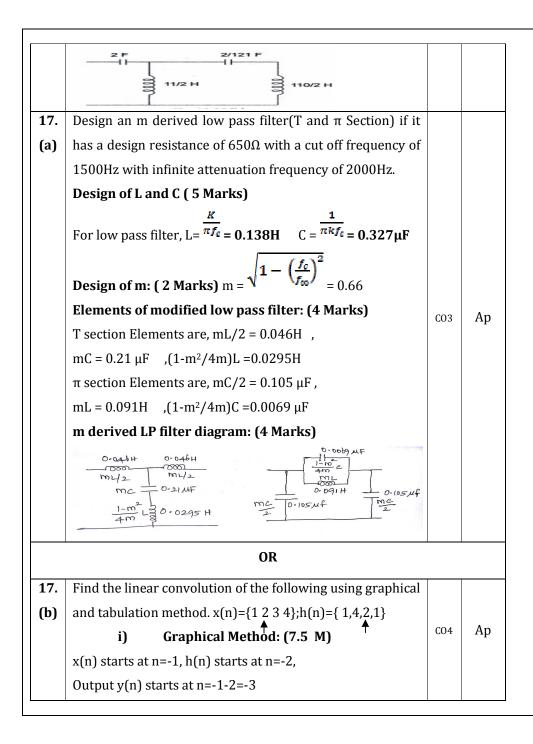
(An Autonomous Institution affiliated to Anna University)

RETEST (2016 Regulation)

Name of Programme: **B.E - EEE**


Course Code & Course Title: 16EET44 - Networks and Signals


Sem: IV Date & Session: 09.04.2018 Duration: 1½ hours Max. Marks: 50


Part	art- A Objective Questions (10X1=1		10 Marks)	
Q. No	Question	CO No	Blooms Level	
1	c) Multiplication	CO1	R	
2	b) (8/3) Ω	CO1	U	
3	c) on jω axis	CO2	R	
4	a) pole at ω = 0	CO2	U	
5	True	CO3	R	
6	Band stop fliter	CO3	U	
7	b) Convolution	CO4	U	
8	a) y[n] = x[n-k]	CO4	U	
9	b) data on a CD	CO4	U	
10	d) Integration	CO4	U	
Part- B Short Answer Questions (5X2=10 Marks)				

Part	Part- B Short Answer Questions (5X2=		:10 Marks)	
Q. No	Question	CO No	Blooms Level	
11	List the uses of lattice network? Lattice networks are used in filter sections and are also used as attenuators filter and attenuators. Lattice structures are sometimes used in preference to ladder structures in some special applications.	CO1	R	
12	List the properties of RL Driving point function.	CO2	R	

	> The Poles and Zeros of the RL driving point impedance		
	function are located on the negative real axis of the s-		
	plane.		
	 Poles and zeros alternate along the negative real axis 		
	➤ The singularity at the origin or s=0 is a zero		
	➤ The singularity at s=∞ is a pole		
	➤ The slope of the impedance curve is positive		
	➤ The impedance at s=∞ is always greater than the		
	impedance at $\omega = 0$		
	> The residues at the poles of Z(s) are real and negative.		
	The residues of $Z(s)/s$ are real and positive		
13	Check whether $Z(s) = (S+3)/(S+2)$ is a positive real	CO2	U
	function.		
	1. Function Z(s) has poles at s=-2 and zero at s=-3. Thus		
	the pole and zero are in the left half of the s plane		
	2. There is no pole on the $j\omega$ axis, hence residue test is not		
	carried out		
	3. $A(\omega^2) = m_1 m_2 - n_1 n_2 / s = j\omega$		
	$= 3X1 - sXs/s = j\omega$		
	$=3+\omega^2$		
	A(ω2)≥0 for all ωSince all the conditions are satisfied.		
	The function is positive real function		
14	Find the frequency at which prototype π -section low pass	CO3	U
	filter having a cut-off frequency fc has an attenuation of		
	20dB.		
	$\alpha = 20*0.1151=2.23$ Neper		

No. of samples in y(n) = N1+N2-1=4+4-1=7 Samples $y(n) = \sum x(k)h(n-k)$ n=-3, h(-3-k) n=-2, h(-2-k) n=-1, h(-1-k) n=0, h(-k)n=1, h(1-k)n=2, h(2-k)n=3, h(3-k) $y(n) = \{1,6,13,21,24,11,4\}$ Tabulation Method: (5 M) n=-1 h(-1-k) h(-k) n=1 h(1-k) n=2 h(2-k) $y(n) = \{1,6,13,21,24,11,4\}$